Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach

We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of financial studies 2017-04, Vol.30 (4), p.1382-1423
Hauptverfasser: Yan, Xuemin (Sterling), Zheng, Lingling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1423
container_issue 4
container_start_page 1382
container_title The Review of financial studies
container_volume 30
creator Yan, Xuemin (Sterling)
Zheng, Lingling
description We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even after accounting for data mining. This predictive ability is more pronounced following high-sentiment periods and among stocks with greater limits to arbitrage. Our evidence suggests that fundamental-based anomalies, including those newly discovered in this study, cannot be attributed to random chance, and they are better explained by mispricing. Our approach is general and we also apply it to past return–based anomalies.
doi_str_mv 10.1093/rfs/hhx001
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1896088742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26166318</jstor_id><sourcerecordid>26166318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-dbf83e8c13fb9be97a9886e9b32c9bdcf982629730270ff0afd4c98264428203</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKsb90LAnTA2X80k7oZqVagItvshk0mcqW1SkxTsvzdlxNWDx-He9w4A1xjdYyTpJNg46bofhPAJGGHGp0VJuTgFIyQkLSSbsnNwEeMaZYIyNALL-d61amtcUhtYObU5xD5C5VqYOgNnwcdYLI1OvXfQW7hMXn_BD5P2wcUHWMFHlVTx1rvefcJqtwte6e4SnFm1iebqb47Bav60mr0Ui_fn11m1KDRlPBVtYwU1QmNqG9kYWSopBDeyoUTLptVWCsKJLCkiJbIWKdsyfdwxRgRBdAxuh9jc-r03MdVrn8_KjTUWkiMhSkYydTdQ-vhLMLbehX6rwqHGqD46q7OzenCW4ZsBXsfkwz9JOOacYkF_AdhBaQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896088742</pqid></control><display><type>article</type><title>Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach</title><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Yan, Xuemin (Sterling) ; Zheng, Lingling</creator><creatorcontrib>Yan, Xuemin (Sterling) ; Zheng, Lingling</creatorcontrib><description>We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even after accounting for data mining. This predictive ability is more pronounced following high-sentiment periods and among stocks with greater limits to arbitrage. Our evidence suggests that fundamental-based anomalies, including those newly discovered in this study, cannot be attributed to random chance, and they are better explained by mispricing. Our approach is general and we also apply it to past return–based anomalies.</description><identifier>ISSN: 0893-9454</identifier><identifier>EISSN: 1465-7368</identifier><identifier>DOI: 10.1093/rfs/hhx001</identifier><language>eng</language><publisher>Oxford: Oxford University Press for The Society for Financial Studies</publisher><subject>Arbitrage ; Bootstrap method ; Data mining ; Financial statements ; Predictions ; Rates of return ; Studies</subject><ispartof>The Review of financial studies, 2017-04, Vol.30 (4), p.1382-1423</ispartof><rights>Copyright © 2017 The Society for Financial Studies</rights><rights>Copyright Oxford Publishing Limited(England) Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-dbf83e8c13fb9be97a9886e9b32c9bdcf982629730270ff0afd4c98264428203</citedby><cites>FETCH-LOGICAL-c346t-dbf83e8c13fb9be97a9886e9b32c9bdcf982629730270ff0afd4c98264428203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26166318$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26166318$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Yan, Xuemin (Sterling)</creatorcontrib><creatorcontrib>Zheng, Lingling</creatorcontrib><title>Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach</title><title>The Review of financial studies</title><description>We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even after accounting for data mining. This predictive ability is more pronounced following high-sentiment periods and among stocks with greater limits to arbitrage. Our evidence suggests that fundamental-based anomalies, including those newly discovered in this study, cannot be attributed to random chance, and they are better explained by mispricing. Our approach is general and we also apply it to past return–based anomalies.</description><subject>Arbitrage</subject><subject>Bootstrap method</subject><subject>Data mining</subject><subject>Financial statements</subject><subject>Predictions</subject><subject>Rates of return</subject><subject>Studies</subject><issn>0893-9454</issn><issn>1465-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKsb90LAnTA2X80k7oZqVagItvshk0mcqW1SkxTsvzdlxNWDx-He9w4A1xjdYyTpJNg46bofhPAJGGHGp0VJuTgFIyQkLSSbsnNwEeMaZYIyNALL-d61amtcUhtYObU5xD5C5VqYOgNnwcdYLI1OvXfQW7hMXn_BD5P2wcUHWMFHlVTx1rvefcJqtwte6e4SnFm1iebqb47Bav60mr0Ui_fn11m1KDRlPBVtYwU1QmNqG9kYWSopBDeyoUTLptVWCsKJLCkiJbIWKdsyfdwxRgRBdAxuh9jc-r03MdVrn8_KjTUWkiMhSkYydTdQ-vhLMLbehX6rwqHGqD46q7OzenCW4ZsBXsfkwz9JOOacYkF_AdhBaQY</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Yan, Xuemin (Sterling)</creator><creator>Zheng, Lingling</creator><general>Oxford University Press for The Society for Financial Studies</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20170401</creationdate><title>Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach</title><author>Yan, Xuemin (Sterling) ; Zheng, Lingling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-dbf83e8c13fb9be97a9886e9b32c9bdcf982629730270ff0afd4c98264428203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arbitrage</topic><topic>Bootstrap method</topic><topic>Data mining</topic><topic>Financial statements</topic><topic>Predictions</topic><topic>Rates of return</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xuemin (Sterling)</creatorcontrib><creatorcontrib>Zheng, Lingling</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Review of financial studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xuemin (Sterling)</au><au>Zheng, Lingling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach</atitle><jtitle>The Review of financial studies</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>30</volume><issue>4</issue><spage>1382</spage><epage>1423</epage><pages>1382-1423</pages><issn>0893-9454</issn><eissn>1465-7368</eissn><abstract>We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even after accounting for data mining. This predictive ability is more pronounced following high-sentiment periods and among stocks with greater limits to arbitrage. Our evidence suggests that fundamental-based anomalies, including those newly discovered in this study, cannot be attributed to random chance, and they are better explained by mispricing. Our approach is general and we also apply it to past return–based anomalies.</abstract><cop>Oxford</cop><pub>Oxford University Press for The Society for Financial Studies</pub><doi>10.1093/rfs/hhx001</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-9454
ispartof The Review of financial studies, 2017-04, Vol.30 (4), p.1382-1423
issn 0893-9454
1465-7368
language eng
recordid cdi_proquest_journals_1896088742
source Business Source Complete; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Arbitrage
Bootstrap method
Data mining
Financial statements
Predictions
Rates of return
Studies
title Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20Analysis%20and%20the%20Cross-Section%20of%20Stock%20Returns:%20A%20Data-Mining%20Approach&rft.jtitle=The%20Review%20of%20financial%20studies&rft.au=Yan,%20Xuemin%20(Sterling)&rft.date=2017-04-01&rft.volume=30&rft.issue=4&rft.spage=1382&rft.epage=1423&rft.pages=1382-1423&rft.issn=0893-9454&rft.eissn=1465-7368&rft_id=info:doi/10.1093/rfs/hhx001&rft_dat=%3Cjstor_proqu%3E26166318%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896088742&rft_id=info:pmid/&rft_jstor_id=26166318&rfr_iscdi=true