Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach
We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even a...
Gespeichert in:
Veröffentlicht in: | The Review of financial studies 2017-04, Vol.30 (4), p.1382-1423 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1423 |
---|---|
container_issue | 4 |
container_start_page | 1382 |
container_title | The Review of financial studies |
container_volume | 30 |
creator | Yan, Xuemin (Sterling) Zheng, Lingling |
description | We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even after accounting for data mining. This predictive ability is more pronounced following high-sentiment periods and among stocks with greater limits to arbitrage. Our evidence suggests that fundamental-based anomalies, including those newly discovered in this study, cannot be attributed to random chance, and they are better explained by mispricing. Our approach is general and we also apply it to past return–based anomalies. |
doi_str_mv | 10.1093/rfs/hhx001 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1896088742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26166318</jstor_id><sourcerecordid>26166318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-dbf83e8c13fb9be97a9886e9b32c9bdcf982629730270ff0afd4c98264428203</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKsb90LAnTA2X80k7oZqVagItvshk0mcqW1SkxTsvzdlxNWDx-He9w4A1xjdYyTpJNg46bofhPAJGGHGp0VJuTgFIyQkLSSbsnNwEeMaZYIyNALL-d61amtcUhtYObU5xD5C5VqYOgNnwcdYLI1OvXfQW7hMXn_BD5P2wcUHWMFHlVTx1rvefcJqtwte6e4SnFm1iebqb47Bav60mr0Ui_fn11m1KDRlPBVtYwU1QmNqG9kYWSopBDeyoUTLptVWCsKJLCkiJbIWKdsyfdwxRgRBdAxuh9jc-r03MdVrn8_KjTUWkiMhSkYydTdQ-vhLMLbehX6rwqHGqD46q7OzenCW4ZsBXsfkwz9JOOacYkF_AdhBaQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896088742</pqid></control><display><type>article</type><title>Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach</title><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Yan, Xuemin (Sterling) ; Zheng, Lingling</creator><creatorcontrib>Yan, Xuemin (Sterling) ; Zheng, Lingling</creatorcontrib><description>We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even after accounting for data mining. This predictive ability is more pronounced following high-sentiment periods and among stocks with greater limits to arbitrage. Our evidence suggests that fundamental-based anomalies, including those newly discovered in this study, cannot be attributed to random chance, and they are better explained by mispricing. Our approach is general and we also apply it to past return–based anomalies.</description><identifier>ISSN: 0893-9454</identifier><identifier>EISSN: 1465-7368</identifier><identifier>DOI: 10.1093/rfs/hhx001</identifier><language>eng</language><publisher>Oxford: Oxford University Press for The Society for Financial Studies</publisher><subject>Arbitrage ; Bootstrap method ; Data mining ; Financial statements ; Predictions ; Rates of return ; Studies</subject><ispartof>The Review of financial studies, 2017-04, Vol.30 (4), p.1382-1423</ispartof><rights>Copyright © 2017 The Society for Financial Studies</rights><rights>Copyright Oxford Publishing Limited(England) Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-dbf83e8c13fb9be97a9886e9b32c9bdcf982629730270ff0afd4c98264428203</citedby><cites>FETCH-LOGICAL-c346t-dbf83e8c13fb9be97a9886e9b32c9bdcf982629730270ff0afd4c98264428203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26166318$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26166318$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Yan, Xuemin (Sterling)</creatorcontrib><creatorcontrib>Zheng, Lingling</creatorcontrib><title>Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach</title><title>The Review of financial studies</title><description>We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even after accounting for data mining. This predictive ability is more pronounced following high-sentiment periods and among stocks with greater limits to arbitrage. Our evidence suggests that fundamental-based anomalies, including those newly discovered in this study, cannot be attributed to random chance, and they are better explained by mispricing. Our approach is general and we also apply it to past return–based anomalies.</description><subject>Arbitrage</subject><subject>Bootstrap method</subject><subject>Data mining</subject><subject>Financial statements</subject><subject>Predictions</subject><subject>Rates of return</subject><subject>Studies</subject><issn>0893-9454</issn><issn>1465-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKsb90LAnTA2X80k7oZqVagItvshk0mcqW1SkxTsvzdlxNWDx-He9w4A1xjdYyTpJNg46bofhPAJGGHGp0VJuTgFIyQkLSSbsnNwEeMaZYIyNALL-d61amtcUhtYObU5xD5C5VqYOgNnwcdYLI1OvXfQW7hMXn_BD5P2wcUHWMFHlVTx1rvefcJqtwte6e4SnFm1iebqb47Bav60mr0Ui_fn11m1KDRlPBVtYwU1QmNqG9kYWSopBDeyoUTLptVWCsKJLCkiJbIWKdsyfdwxRgRBdAxuh9jc-r03MdVrn8_KjTUWkiMhSkYydTdQ-vhLMLbehX6rwqHGqD46q7OzenCW4ZsBXsfkwz9JOOacYkF_AdhBaQY</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Yan, Xuemin (Sterling)</creator><creator>Zheng, Lingling</creator><general>Oxford University Press for The Society for Financial Studies</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20170401</creationdate><title>Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach</title><author>Yan, Xuemin (Sterling) ; Zheng, Lingling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-dbf83e8c13fb9be97a9886e9b32c9bdcf982629730270ff0afd4c98264428203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arbitrage</topic><topic>Bootstrap method</topic><topic>Data mining</topic><topic>Financial statements</topic><topic>Predictions</topic><topic>Rates of return</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xuemin (Sterling)</creatorcontrib><creatorcontrib>Zheng, Lingling</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Review of financial studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xuemin (Sterling)</au><au>Zheng, Lingling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach</atitle><jtitle>The Review of financial studies</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>30</volume><issue>4</issue><spage>1382</spage><epage>1423</epage><pages>1382-1423</pages><issn>0893-9454</issn><eissn>1465-7368</eissn><abstract>We construct a "universe" of over 18,000 fundamental signals from financial statements and use a bootstrap approach to evaluate the impact of data mining on fundamental-based anomalies. We find that many fundamental signals are significant predictors of cross-sectional stock returns even after accounting for data mining. This predictive ability is more pronounced following high-sentiment periods and among stocks with greater limits to arbitrage. Our evidence suggests that fundamental-based anomalies, including those newly discovered in this study, cannot be attributed to random chance, and they are better explained by mispricing. Our approach is general and we also apply it to past return–based anomalies.</abstract><cop>Oxford</cop><pub>Oxford University Press for The Society for Financial Studies</pub><doi>10.1093/rfs/hhx001</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9454 |
ispartof | The Review of financial studies, 2017-04, Vol.30 (4), p.1382-1423 |
issn | 0893-9454 1465-7368 |
language | eng |
recordid | cdi_proquest_journals_1896088742 |
source | Business Source Complete; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Arbitrage Bootstrap method Data mining Financial statements Predictions Rates of return Studies |
title | Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20Analysis%20and%20the%20Cross-Section%20of%20Stock%20Returns:%20A%20Data-Mining%20Approach&rft.jtitle=The%20Review%20of%20financial%20studies&rft.au=Yan,%20Xuemin%20(Sterling)&rft.date=2017-04-01&rft.volume=30&rft.issue=4&rft.spage=1382&rft.epage=1423&rft.pages=1382-1423&rft.issn=0893-9454&rft.eissn=1465-7368&rft_id=info:doi/10.1093/rfs/hhx001&rft_dat=%3Cjstor_proqu%3E26166318%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896088742&rft_id=info:pmid/&rft_jstor_id=26166318&rfr_iscdi=true |