Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance

Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aeros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical and Process Engineering 2017-03, Vol.38 (1), p.51-66
Hauptverfasser: Waser, Oliver, Brenner, Oliver, Groehn, Arto J., Pratsinis, Sotiris E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 51
container_title Chemical and Process Engineering
container_volume 38
creator Waser, Oliver
Brenner, Oliver
Groehn, Arto J.
Pratsinis, Sotiris E.
description Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li Ti (LTO) particle compositions are made and characterized by N adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO and ZrO
doi_str_mv 10.1515/cpe-2017-0005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1896087661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896087661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-8a90ef3103edb43f716004e5b7fd0c136ddc1d25fc1867416f7c32962fa0e10b3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhoMoWGqP3hc8R2ey2Xx4k9qqUGih9Ry2u7NtSr7cTZH4691SDz14mmF43nfgCYJ7hEcUKJ5UR2EEmIYAIK6CUcQBQswjcX2x3wYT5w6eQAE5pNEooJVtFTnHXsmVu4aZ1rJ1-UPhtG1621YVaTavZE1s3Vk5sPXQ9HuPOtYatijjTSmWGDHZaDarSPmI2lNdKlmxFVnfVstG0V1wY2TlaPI3x8HnfLaZvoeL5dvH9GURqlhkfZjJHMhwBE56G3OTYgIQk9imRoNCnmitUEfCKMySNMbEpIpHeRIZCYSw5ePg4dzb2fbrSK4vDu3RNv5lgVmeQJYmCXoqPFPKts5ZMkVny1raoUAoTjILL7M4ySxOMj3_fOa_ZdWT1bSzx8EvF-X_5jJ_478Znnm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896087661</pqid></control><display><type>article</type><title>Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Waser, Oliver ; Brenner, Oliver ; Groehn, Arto J. ; Pratsinis, Sotiris E.</creator><creatorcontrib>Waser, Oliver ; Brenner, Oliver ; Groehn, Arto J. ; Pratsinis, Sotiris E.</creatorcontrib><description>Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li Ti (LTO) particle compositions are made and characterized by N adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO and ZrO</description><identifier>ISSN: 2300-1925</identifier><identifier>ISSN: 0208-6425</identifier><identifier>EISSN: 2300-1925</identifier><identifier>DOI: 10.1515/cpe-2017-0005</identifier><language>eng</language><publisher>Warsaw: De Gruyter Open</publisher><subject>Adsorption ; Coalescing ; Combustion synthesis ; Computational fluid dynamics ; flame synthesis of electroceramics ; Infrared spectroscopy ; Li-ion battery ; Li4Ti5O12 ; Nanomaterials ; residence time distribution ; size control ; Spray pyrolysis</subject><ispartof>Chemical and Process Engineering, 2017-03, Vol.38 (1), p.51-66</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-8a90ef3103edb43f716004e5b7fd0c136ddc1d25fc1867416f7c32962fa0e10b3</citedby><cites>FETCH-LOGICAL-c458t-8a90ef3103edb43f716004e5b7fd0c136ddc1d25fc1867416f7c32962fa0e10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Waser, Oliver</creatorcontrib><creatorcontrib>Brenner, Oliver</creatorcontrib><creatorcontrib>Groehn, Arto J.</creatorcontrib><creatorcontrib>Pratsinis, Sotiris E.</creatorcontrib><title>Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance</title><title>Chemical and Process Engineering</title><description>Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li Ti (LTO) particle compositions are made and characterized by N adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO and ZrO</description><subject>Adsorption</subject><subject>Coalescing</subject><subject>Combustion synthesis</subject><subject>Computational fluid dynamics</subject><subject>flame synthesis of electroceramics</subject><subject>Infrared spectroscopy</subject><subject>Li-ion battery</subject><subject>Li4Ti5O12</subject><subject>Nanomaterials</subject><subject>residence time distribution</subject><subject>size control</subject><subject>Spray pyrolysis</subject><issn>2300-1925</issn><issn>0208-6425</issn><issn>2300-1925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1Lw0AQhoMoWGqP3hc8R2ey2Xx4k9qqUGih9Ry2u7NtSr7cTZH4691SDz14mmF43nfgCYJ7hEcUKJ5UR2EEmIYAIK6CUcQBQswjcX2x3wYT5w6eQAE5pNEooJVtFTnHXsmVu4aZ1rJ1-UPhtG1621YVaTavZE1s3Vk5sPXQ9HuPOtYatijjTSmWGDHZaDarSPmI2lNdKlmxFVnfVstG0V1wY2TlaPI3x8HnfLaZvoeL5dvH9GURqlhkfZjJHMhwBE56G3OTYgIQk9imRoNCnmitUEfCKMySNMbEpIpHeRIZCYSw5ePg4dzb2fbrSK4vDu3RNv5lgVmeQJYmCXoqPFPKts5ZMkVny1raoUAoTjILL7M4ySxOMj3_fOa_ZdWT1bSzx8EvF-X_5jJ_478Znnm8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Waser, Oliver</creator><creator>Brenner, Oliver</creator><creator>Groehn, Arto J.</creator><creator>Pratsinis, Sotiris E.</creator><general>De Gruyter Open</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170301</creationdate><title>Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance</title><author>Waser, Oliver ; Brenner, Oliver ; Groehn, Arto J. ; Pratsinis, Sotiris E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-8a90ef3103edb43f716004e5b7fd0c136ddc1d25fc1867416f7c32962fa0e10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Coalescing</topic><topic>Combustion synthesis</topic><topic>Computational fluid dynamics</topic><topic>flame synthesis of electroceramics</topic><topic>Infrared spectroscopy</topic><topic>Li-ion battery</topic><topic>Li4Ti5O12</topic><topic>Nanomaterials</topic><topic>residence time distribution</topic><topic>size control</topic><topic>Spray pyrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waser, Oliver</creatorcontrib><creatorcontrib>Brenner, Oliver</creatorcontrib><creatorcontrib>Groehn, Arto J.</creatorcontrib><creatorcontrib>Pratsinis, Sotiris E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Chemical and Process Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waser, Oliver</au><au>Brenner, Oliver</au><au>Groehn, Arto J.</au><au>Pratsinis, Sotiris E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance</atitle><jtitle>Chemical and Process Engineering</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>38</volume><issue>1</issue><spage>51</spage><epage>66</epage><pages>51-66</pages><issn>2300-1925</issn><issn>0208-6425</issn><eissn>2300-1925</eissn><abstract>Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li Ti (LTO) particle compositions are made and characterized by N adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO and ZrO</abstract><cop>Warsaw</cop><pub>De Gruyter Open</pub><doi>10.1515/cpe-2017-0005</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2300-1925
ispartof Chemical and Process Engineering, 2017-03, Vol.38 (1), p.51-66
issn 2300-1925
0208-6425
2300-1925
language eng
recordid cdi_proquest_journals_1896087661
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adsorption
Coalescing
Combustion synthesis
Computational fluid dynamics
flame synthesis of electroceramics
Infrared spectroscopy
Li-ion battery
Li4Ti5O12
Nanomaterials
residence time distribution
size control
Spray pyrolysis
title Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Design%20for%20Size-Controlled%20Flame%20Spray%20Synthesis%20of%20Li4Ti5O12%20and%20Electrochemical%20Performance&rft.jtitle=Chemical%20and%20Process%20Engineering&rft.au=Waser,%20Oliver&rft.date=2017-03-01&rft.volume=38&rft.issue=1&rft.spage=51&rft.epage=66&rft.pages=51-66&rft.issn=2300-1925&rft.eissn=2300-1925&rft_id=info:doi/10.1515/cpe-2017-0005&rft_dat=%3Cproquest_cross%3E1896087661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896087661&rft_id=info:pmid/&rfr_iscdi=true