Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance
Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aeros...
Gespeichert in:
Veröffentlicht in: | Chemical and Process Engineering 2017-03, Vol.38 (1), p.51-66 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Chemical and Process Engineering |
container_volume | 38 |
creator | Waser, Oliver Brenner, Oliver Groehn, Arto J. Pratsinis, Sotiris E. |
description | Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li
Ti
(LTO) particle compositions are made and characterized by N
adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO
and ZrO |
doi_str_mv | 10.1515/cpe-2017-0005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1896087661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896087661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-8a90ef3103edb43f716004e5b7fd0c136ddc1d25fc1867416f7c32962fa0e10b3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhoMoWGqP3hc8R2ey2Xx4k9qqUGih9Ry2u7NtSr7cTZH4691SDz14mmF43nfgCYJ7hEcUKJ5UR2EEmIYAIK6CUcQBQswjcX2x3wYT5w6eQAE5pNEooJVtFTnHXsmVu4aZ1rJ1-UPhtG1621YVaTavZE1s3Vk5sPXQ9HuPOtYatijjTSmWGDHZaDarSPmI2lNdKlmxFVnfVstG0V1wY2TlaPI3x8HnfLaZvoeL5dvH9GURqlhkfZjJHMhwBE56G3OTYgIQk9imRoNCnmitUEfCKMySNMbEpIpHeRIZCYSw5ePg4dzb2fbrSK4vDu3RNv5lgVmeQJYmCXoqPFPKts5ZMkVny1raoUAoTjILL7M4ySxOMj3_fOa_ZdWT1bSzx8EvF-X_5jJ_478Znnm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896087661</pqid></control><display><type>article</type><title>Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Waser, Oliver ; Brenner, Oliver ; Groehn, Arto J. ; Pratsinis, Sotiris E.</creator><creatorcontrib>Waser, Oliver ; Brenner, Oliver ; Groehn, Arto J. ; Pratsinis, Sotiris E.</creatorcontrib><description>Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li
Ti
(LTO) particle compositions are made and characterized by N
adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO
and ZrO</description><identifier>ISSN: 2300-1925</identifier><identifier>ISSN: 0208-6425</identifier><identifier>EISSN: 2300-1925</identifier><identifier>DOI: 10.1515/cpe-2017-0005</identifier><language>eng</language><publisher>Warsaw: De Gruyter Open</publisher><subject>Adsorption ; Coalescing ; Combustion synthesis ; Computational fluid dynamics ; flame synthesis of electroceramics ; Infrared spectroscopy ; Li-ion battery ; Li4Ti5O12 ; Nanomaterials ; residence time distribution ; size control ; Spray pyrolysis</subject><ispartof>Chemical and Process Engineering, 2017-03, Vol.38 (1), p.51-66</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-8a90ef3103edb43f716004e5b7fd0c136ddc1d25fc1867416f7c32962fa0e10b3</citedby><cites>FETCH-LOGICAL-c458t-8a90ef3103edb43f716004e5b7fd0c136ddc1d25fc1867416f7c32962fa0e10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Waser, Oliver</creatorcontrib><creatorcontrib>Brenner, Oliver</creatorcontrib><creatorcontrib>Groehn, Arto J.</creatorcontrib><creatorcontrib>Pratsinis, Sotiris E.</creatorcontrib><title>Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance</title><title>Chemical and Process Engineering</title><description>Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li
Ti
(LTO) particle compositions are made and characterized by N
adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO
and ZrO</description><subject>Adsorption</subject><subject>Coalescing</subject><subject>Combustion synthesis</subject><subject>Computational fluid dynamics</subject><subject>flame synthesis of electroceramics</subject><subject>Infrared spectroscopy</subject><subject>Li-ion battery</subject><subject>Li4Ti5O12</subject><subject>Nanomaterials</subject><subject>residence time distribution</subject><subject>size control</subject><subject>Spray pyrolysis</subject><issn>2300-1925</issn><issn>0208-6425</issn><issn>2300-1925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1Lw0AQhoMoWGqP3hc8R2ey2Xx4k9qqUGih9Ry2u7NtSr7cTZH4691SDz14mmF43nfgCYJ7hEcUKJ5UR2EEmIYAIK6CUcQBQswjcX2x3wYT5w6eQAE5pNEooJVtFTnHXsmVu4aZ1rJ1-UPhtG1621YVaTavZE1s3Vk5sPXQ9HuPOtYatijjTSmWGDHZaDarSPmI2lNdKlmxFVnfVstG0V1wY2TlaPI3x8HnfLaZvoeL5dvH9GURqlhkfZjJHMhwBE56G3OTYgIQk9imRoNCnmitUEfCKMySNMbEpIpHeRIZCYSw5ePg4dzb2fbrSK4vDu3RNv5lgVmeQJYmCXoqPFPKts5ZMkVny1raoUAoTjILL7M4ySxOMj3_fOa_ZdWT1bSzx8EvF-X_5jJ_478Znnm8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Waser, Oliver</creator><creator>Brenner, Oliver</creator><creator>Groehn, Arto J.</creator><creator>Pratsinis, Sotiris E.</creator><general>De Gruyter Open</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170301</creationdate><title>Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance</title><author>Waser, Oliver ; Brenner, Oliver ; Groehn, Arto J. ; Pratsinis, Sotiris E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-8a90ef3103edb43f716004e5b7fd0c136ddc1d25fc1867416f7c32962fa0e10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Coalescing</topic><topic>Combustion synthesis</topic><topic>Computational fluid dynamics</topic><topic>flame synthesis of electroceramics</topic><topic>Infrared spectroscopy</topic><topic>Li-ion battery</topic><topic>Li4Ti5O12</topic><topic>Nanomaterials</topic><topic>residence time distribution</topic><topic>size control</topic><topic>Spray pyrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waser, Oliver</creatorcontrib><creatorcontrib>Brenner, Oliver</creatorcontrib><creatorcontrib>Groehn, Arto J.</creatorcontrib><creatorcontrib>Pratsinis, Sotiris E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Chemical and Process Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waser, Oliver</au><au>Brenner, Oliver</au><au>Groehn, Arto J.</au><au>Pratsinis, Sotiris E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance</atitle><jtitle>Chemical and Process Engineering</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>38</volume><issue>1</issue><spage>51</spage><epage>66</epage><pages>51-66</pages><issn>2300-1925</issn><issn>0208-6425</issn><eissn>2300-1925</eissn><abstract>Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li
Ti
(LTO) particle compositions are made and characterized by N
adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO
and ZrO</abstract><cop>Warsaw</cop><pub>De Gruyter Open</pub><doi>10.1515/cpe-2017-0005</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2300-1925 |
ispartof | Chemical and Process Engineering, 2017-03, Vol.38 (1), p.51-66 |
issn | 2300-1925 0208-6425 2300-1925 |
language | eng |
recordid | cdi_proquest_journals_1896087661 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adsorption Coalescing Combustion synthesis Computational fluid dynamics flame synthesis of electroceramics Infrared spectroscopy Li-ion battery Li4Ti5O12 Nanomaterials residence time distribution size control Spray pyrolysis |
title | Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Design%20for%20Size-Controlled%20Flame%20Spray%20Synthesis%20of%20Li4Ti5O12%20and%20Electrochemical%20Performance&rft.jtitle=Chemical%20and%20Process%20Engineering&rft.au=Waser,%20Oliver&rft.date=2017-03-01&rft.volume=38&rft.issue=1&rft.spage=51&rft.epage=66&rft.pages=51-66&rft.issn=2300-1925&rft.eissn=2300-1925&rft_id=info:doi/10.1515/cpe-2017-0005&rft_dat=%3Cproquest_cross%3E1896087661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896087661&rft_id=info:pmid/&rfr_iscdi=true |