JAMES: An object‐oriented Java framework for discrete optimization using local search metaheuristics

Summary This paper describes the Java Metaheuristics Search framework (JAMES, v1.1): an object‐oriented Java framework for discrete optimization using local search algorithms that exploits the generality of such metaheuristics by clearly separating search implementation and application from problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software, practice & experience practice & experience, 2017-06, Vol.47 (6), p.921-938
Hauptverfasser: De Beukelaer, Herman, Davenport, Guy F., De Meyer, Geert, Fack, Veerle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 6
container_start_page 921
container_title Software, practice & experience
container_volume 47
creator De Beukelaer, Herman
Davenport, Guy F.
De Meyer, Geert
Fack, Veerle
description Summary This paper describes the Java Metaheuristics Search framework (JAMES, v1.1): an object‐oriented Java framework for discrete optimization using local search algorithms that exploits the generality of such metaheuristics by clearly separating search implementation and application from problem specification. A wide range of generic local searches are provided, including (stochastic) hill climbing, tabu search, variable neighbourhood search and parallel tempering. These can be applied to any user‐defined problem by plugging in a custom neighbourhood for the corresponding solution type. Using an automated analysis workflow, the performance of different search algorithms can be compared in order to select an appropriate optimization strategy. Implementations of specific components are included for subset selection, such as a predefined solution type, generic problem definition and several subset neighbourhoods used to modify the set of selected items. Additional components for other types of problems (e.g. permutation problems) are provided through an extensions module which also includes the analysis workflow. In comparison with existing Java metaheuristics frameworks that mainly focus on population‐based algorithms, JAMES has a much lower memory footprint and promotes efficient application of local searches by taking full advantage of move‐based evaluation. Releases of JAMES are deployed to the Maven Central Repository so that the framework can easily be included as a dependency in other Java applications. The project is fully open source and hosted on GitHub. More information can be found at http://www.jamesframework.org. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/spe.2459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1895831446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895831446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-a4c9e5bc2c0dfa9139e191dce27fde0f8a57d21b6fb1055c39800d6e2ea65dad3</originalsourceid><addsrcrecordid>eNp10M1KAzEUhuEgCtYqeAkBN26mJpmfTtyVUn9KRaEK7oZMcmJTZyY1yVjqykvwGr0Sp9atq7N5OB-8CJ1SMqCEsAu_ggFLUr6HepTwYURY8ryPeoTEeUSyJDlER94vCaE0ZVkP6enobjK_xKMG23IJMnx_fllnoAmg8FS8C6ydqGFt3SvW1mFlvHQQANtVMLX5EMHYBrfeNC-4slJU2INwcoFrCGIBrTM-GOmP0YEWlYeTv9tHT1eTx_FNNLu_vh2PZpFkPOaRSCSHtJRMEqUFpzEHyqmSwIZaAdG5SIeK0TLTJSVpKmOeE6IyYCCyVAkV99HZ7u_K2bcWfCiWtnVNN1nQnKd5TJMk69T5TklnvXegi5UztXCbgpJiW7HoKhbbih2NdnRtKtj864r5w-TX_wD5MnYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895831446</pqid></control><display><type>article</type><title>JAMES: An object‐oriented Java framework for discrete optimization using local search metaheuristics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Beukelaer, Herman ; Davenport, Guy F. ; De Meyer, Geert ; Fack, Veerle</creator><creatorcontrib>De Beukelaer, Herman ; Davenport, Guy F. ; De Meyer, Geert ; Fack, Veerle</creatorcontrib><description>Summary This paper describes the Java Metaheuristics Search framework (JAMES, v1.1): an object‐oriented Java framework for discrete optimization using local search algorithms that exploits the generality of such metaheuristics by clearly separating search implementation and application from problem specification. A wide range of generic local searches are provided, including (stochastic) hill climbing, tabu search, variable neighbourhood search and parallel tempering. These can be applied to any user‐defined problem by plugging in a custom neighbourhood for the corresponding solution type. Using an automated analysis workflow, the performance of different search algorithms can be compared in order to select an appropriate optimization strategy. Implementations of specific components are included for subset selection, such as a predefined solution type, generic problem definition and several subset neighbourhoods used to modify the set of selected items. Additional components for other types of problems (e.g. permutation problems) are provided through an extensions module which also includes the analysis workflow. In comparison with existing Java metaheuristics frameworks that mainly focus on population‐based algorithms, JAMES has a much lower memory footprint and promotes efficient application of local searches by taking full advantage of move‐based evaluation. Releases of JAMES are deployed to the Maven Central Repository so that the framework can easily be included as a dependency in other Java applications. The project is fully open source and hosted on GitHub. More information can be found at http://www.jamesframework.org. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2459</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>discrete optimization ; framework ; Java ; local search ; metaheuristics ; Object-oriented programming ; object‐oriented ; Optimization ; Search algorithms ; Tabu search ; Workflow</subject><ispartof>Software, practice &amp; experience, 2017-06, Vol.47 (6), p.921-938</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-a4c9e5bc2c0dfa9139e191dce27fde0f8a57d21b6fb1055c39800d6e2ea65dad3</citedby><cites>FETCH-LOGICAL-c2939-a4c9e5bc2c0dfa9139e191dce27fde0f8a57d21b6fb1055c39800d6e2ea65dad3</cites><orcidid>0000-0002-3968-7386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>De Beukelaer, Herman</creatorcontrib><creatorcontrib>Davenport, Guy F.</creatorcontrib><creatorcontrib>De Meyer, Geert</creatorcontrib><creatorcontrib>Fack, Veerle</creatorcontrib><title>JAMES: An object‐oriented Java framework for discrete optimization using local search metaheuristics</title><title>Software, practice &amp; experience</title><description>Summary This paper describes the Java Metaheuristics Search framework (JAMES, v1.1): an object‐oriented Java framework for discrete optimization using local search algorithms that exploits the generality of such metaheuristics by clearly separating search implementation and application from problem specification. A wide range of generic local searches are provided, including (stochastic) hill climbing, tabu search, variable neighbourhood search and parallel tempering. These can be applied to any user‐defined problem by plugging in a custom neighbourhood for the corresponding solution type. Using an automated analysis workflow, the performance of different search algorithms can be compared in order to select an appropriate optimization strategy. Implementations of specific components are included for subset selection, such as a predefined solution type, generic problem definition and several subset neighbourhoods used to modify the set of selected items. Additional components for other types of problems (e.g. permutation problems) are provided through an extensions module which also includes the analysis workflow. In comparison with existing Java metaheuristics frameworks that mainly focus on population‐based algorithms, JAMES has a much lower memory footprint and promotes efficient application of local searches by taking full advantage of move‐based evaluation. Releases of JAMES are deployed to the Maven Central Repository so that the framework can easily be included as a dependency in other Java applications. The project is fully open source and hosted on GitHub. More information can be found at http://www.jamesframework.org. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>discrete optimization</subject><subject>framework</subject><subject>Java</subject><subject>local search</subject><subject>metaheuristics</subject><subject>Object-oriented programming</subject><subject>object‐oriented</subject><subject>Optimization</subject><subject>Search algorithms</subject><subject>Tabu search</subject><subject>Workflow</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUhuEgCtYqeAkBN26mJpmfTtyVUn9KRaEK7oZMcmJTZyY1yVjqykvwGr0Sp9atq7N5OB-8CJ1SMqCEsAu_ggFLUr6HepTwYURY8ryPeoTEeUSyJDlER94vCaE0ZVkP6enobjK_xKMG23IJMnx_fllnoAmg8FS8C6ydqGFt3SvW1mFlvHQQANtVMLX5EMHYBrfeNC-4slJU2INwcoFrCGIBrTM-GOmP0YEWlYeTv9tHT1eTx_FNNLu_vh2PZpFkPOaRSCSHtJRMEqUFpzEHyqmSwIZaAdG5SIeK0TLTJSVpKmOeE6IyYCCyVAkV99HZ7u_K2bcWfCiWtnVNN1nQnKd5TJMk69T5TklnvXegi5UztXCbgpJiW7HoKhbbih2NdnRtKtj864r5w-TX_wD5MnYg</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>De Beukelaer, Herman</creator><creator>Davenport, Guy F.</creator><creator>De Meyer, Geert</creator><creator>Fack, Veerle</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3968-7386</orcidid></search><sort><creationdate>201706</creationdate><title>JAMES: An object‐oriented Java framework for discrete optimization using local search metaheuristics</title><author>De Beukelaer, Herman ; Davenport, Guy F. ; De Meyer, Geert ; Fack, Veerle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-a4c9e5bc2c0dfa9139e191dce27fde0f8a57d21b6fb1055c39800d6e2ea65dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>discrete optimization</topic><topic>framework</topic><topic>Java</topic><topic>local search</topic><topic>metaheuristics</topic><topic>Object-oriented programming</topic><topic>object‐oriented</topic><topic>Optimization</topic><topic>Search algorithms</topic><topic>Tabu search</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Beukelaer, Herman</creatorcontrib><creatorcontrib>Davenport, Guy F.</creatorcontrib><creatorcontrib>De Meyer, Geert</creatorcontrib><creatorcontrib>Fack, Veerle</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software, practice &amp; experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Beukelaer, Herman</au><au>Davenport, Guy F.</au><au>De Meyer, Geert</au><au>Fack, Veerle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JAMES: An object‐oriented Java framework for discrete optimization using local search metaheuristics</atitle><jtitle>Software, practice &amp; experience</jtitle><date>2017-06</date><risdate>2017</risdate><volume>47</volume><issue>6</issue><spage>921</spage><epage>938</epage><pages>921-938</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>Summary This paper describes the Java Metaheuristics Search framework (JAMES, v1.1): an object‐oriented Java framework for discrete optimization using local search algorithms that exploits the generality of such metaheuristics by clearly separating search implementation and application from problem specification. A wide range of generic local searches are provided, including (stochastic) hill climbing, tabu search, variable neighbourhood search and parallel tempering. These can be applied to any user‐defined problem by plugging in a custom neighbourhood for the corresponding solution type. Using an automated analysis workflow, the performance of different search algorithms can be compared in order to select an appropriate optimization strategy. Implementations of specific components are included for subset selection, such as a predefined solution type, generic problem definition and several subset neighbourhoods used to modify the set of selected items. Additional components for other types of problems (e.g. permutation problems) are provided through an extensions module which also includes the analysis workflow. In comparison with existing Java metaheuristics frameworks that mainly focus on population‐based algorithms, JAMES has a much lower memory footprint and promotes efficient application of local searches by taking full advantage of move‐based evaluation. Releases of JAMES are deployed to the Maven Central Repository so that the framework can easily be included as a dependency in other Java applications. The project is fully open source and hosted on GitHub. More information can be found at http://www.jamesframework.org. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/spe.2459</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3968-7386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0038-0644
ispartof Software, practice & experience, 2017-06, Vol.47 (6), p.921-938
issn 0038-0644
1097-024X
language eng
recordid cdi_proquest_journals_1895831446
source Wiley Online Library Journals Frontfile Complete
subjects discrete optimization
framework
Java
local search
metaheuristics
Object-oriented programming
object‐oriented
Optimization
Search algorithms
Tabu search
Workflow
title JAMES: An object‐oriented Java framework for discrete optimization using local search metaheuristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JAMES:%20An%20object%E2%80%90oriented%20Java%20framework%20for%20discrete%20optimization%20using%20local%20search%20metaheuristics&rft.jtitle=Software,%20practice%20&%20experience&rft.au=De%C2%A0Beukelaer,%20Herman&rft.date=2017-06&rft.volume=47&rft.issue=6&rft.spage=921&rft.epage=938&rft.pages=921-938&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2459&rft_dat=%3Cproquest_cross%3E1895831446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895831446&rft_id=info:pmid/&rfr_iscdi=true