Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell

Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2017-06, Vol.63 (6), p.1830-1838
Hauptverfasser: Lin, Tong, Bai, Xue, Hu, Yidan, Li, Bingzhi, Yuan, Ying‐Jin, Song, Hao, Yang, Yun, Wang, Jingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1838
container_issue 6
container_start_page 1830
container_title AIChE journal
container_volume 63
creator Lin, Tong
Bai, Xue
Hu, Yidan
Li, Bingzhi
Yuan, Ying‐Jin
Song, Hao
Yang, Yun
Wang, Jingyu
description Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon sources. To expand the carbon source range being used in MFCs, we herein rationally designed a glucose‐fed fungus‐bacteria microbial consortium including a fermenter (Saccharomyces cerevisiae) in which the ethanol pathway was knocked out and the lactic acid biosynthesis pathway from Bovin was introduced into S. cerevisiae, and an exoelectrogen (Shewanella oneidensis MR‐1). We optimized the co‐culturing conditions of the microbial consortium to achieve an optimal coordination between carbon source metabolism of the fermenter and extracellular electron transfer of the exoelectrogen, such that lactate, the metabolic product of glucose by the recombinant S. cerevisiae, was continuously supplied to S. oneidensis in a constant level until glucose exhaustion. This metabolic coordination between the fermenter and the exoelectrogen enabled bioelectricity production in a glucose‐fed MFC. Furthermore, a porin protein encoded by oprF gene from Pseudomonas aeruginosa was incorporated into the outer membrane of S. oneidensis to enhance membrane permeability and its hydrophobicity, which in turn facilitated its biofilm formation and power generation. The glucose‐fed MFC inoculated with the recombinant S. cerevisiae‐recombinant S. oneidensis generated a maximum power density of 123.4 mW/m 2 , significantly higher than that of recombinant S. cerevisiae‐wild‐type S. oneidensis (71.5 mW/m 2 ). Our design strategy of synthetic microbial consortia was highly scalable to empower the possibility of a wide range of carbon sources being used in MFCs, e.g., xylose, cellulosic biomass, and recalcitrant wastes. © 2016 American Institute of Chemical Engineers AIChE J , 63: 1830–1838, 2017
doi_str_mv 10.1002/aic.15611
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1895075876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895075876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-639a4fdc03badab2d2fa0f0e907e32f2f2ead4d7454c29ab39f08e3b32e53cd43</originalsourceid><addsrcrecordid>eNotUMlOwzAQtRBIlOXAH1jixCHFS9YjqtikShwK52jijBtXTlzsBNQbBz6Ab-RLMBTNYRa9ZfQIueBszhkT12DUnGc55wdkxrO0SLKKZYdkxhjjSTzwY3ISwiZuoijFjHyudsPY4WgUXYFSHXjX7xQGqtDjmwkGkH5_fNFVh-8woLVA3YCmxSGYCHJDcH40U09xgMZG3tpOygWMHI0t7cy6i-MWvXa-h0Eh7Y3yrjFgqZ7QRh9rz8iRBhvw_L-fkpe72-fFQ7J8un9c3CwTJXM2JrmsINWtYrKBFhrRCg1MM6xYgVLoWAht2hZplipRQSMrzUqUjRSYSdWm8pRc7nW33r1OGMZ64yY_RMual1XGiqws8oi62qPinyF41PXWmx78ruas_g25jiHXfyHLHzfCdhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895075876</pqid></control><display><type>article</type><title>Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell</title><source>Access via Wiley Online Library</source><creator>Lin, Tong ; Bai, Xue ; Hu, Yidan ; Li, Bingzhi ; Yuan, Ying‐Jin ; Song, Hao ; Yang, Yun ; Wang, Jingyu</creator><creatorcontrib>Lin, Tong ; Bai, Xue ; Hu, Yidan ; Li, Bingzhi ; Yuan, Ying‐Jin ; Song, Hao ; Yang, Yun ; Wang, Jingyu</creatorcontrib><description>Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon sources. To expand the carbon source range being used in MFCs, we herein rationally designed a glucose‐fed fungus‐bacteria microbial consortium including a fermenter (Saccharomyces cerevisiae) in which the ethanol pathway was knocked out and the lactic acid biosynthesis pathway from Bovin was introduced into S. cerevisiae, and an exoelectrogen (Shewanella oneidensis MR‐1). We optimized the co‐culturing conditions of the microbial consortium to achieve an optimal coordination between carbon source metabolism of the fermenter and extracellular electron transfer of the exoelectrogen, such that lactate, the metabolic product of glucose by the recombinant S. cerevisiae, was continuously supplied to S. oneidensis in a constant level until glucose exhaustion. This metabolic coordination between the fermenter and the exoelectrogen enabled bioelectricity production in a glucose‐fed MFC. Furthermore, a porin protein encoded by oprF gene from Pseudomonas aeruginosa was incorporated into the outer membrane of S. oneidensis to enhance membrane permeability and its hydrophobicity, which in turn facilitated its biofilm formation and power generation. The glucose‐fed MFC inoculated with the recombinant S. cerevisiae‐recombinant S. oneidensis generated a maximum power density of 123.4 mW/m 2 , significantly higher than that of recombinant S. cerevisiae‐wild‐type S. oneidensis (71.5 mW/m 2 ). Our design strategy of synthetic microbial consortia was highly scalable to empower the possibility of a wide range of carbon sources being used in MFCs, e.g., xylose, cellulosic biomass, and recalcitrant wastes. © 2016 American Institute of Chemical Engineers AIChE J , 63: 1830–1838, 2017</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15611</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Biochemical fuel cells ; Bioelectricity ; Biofilms ; Bioreactors ; Biosynthesis ; Carbon ; Carbon sources ; Consortia ; Coordination ; Electrochemistry ; Electron transfer ; Ethanol ; Fuel cells ; Fuel technology ; Fungi ; Glucose ; Hydrophobicity ; Lactic acid ; Maximum power density ; Membrane permeability ; Membranes ; Metabolism ; Microorganisms ; Nuclear fuels ; OprF gene ; Organic wastes ; Pseudomonas aeruginosa ; Saccharomyces cerevisiae ; Shewanella oneidensis ; Wastewater treatment ; Yeast</subject><ispartof>AIChE journal, 2017-06, Vol.63 (6), p.1830-1838</ispartof><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-639a4fdc03badab2d2fa0f0e907e32f2f2ead4d7454c29ab39f08e3b32e53cd43</citedby><cites>FETCH-LOGICAL-c360t-639a4fdc03badab2d2fa0f0e907e32f2f2ead4d7454c29ab39f08e3b32e53cd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Hu, Yidan</creatorcontrib><creatorcontrib>Li, Bingzhi</creatorcontrib><creatorcontrib>Yuan, Ying‐Jin</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Yang, Yun</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><title>Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell</title><title>AIChE journal</title><description>Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon sources. To expand the carbon source range being used in MFCs, we herein rationally designed a glucose‐fed fungus‐bacteria microbial consortium including a fermenter (Saccharomyces cerevisiae) in which the ethanol pathway was knocked out and the lactic acid biosynthesis pathway from Bovin was introduced into S. cerevisiae, and an exoelectrogen (Shewanella oneidensis MR‐1). We optimized the co‐culturing conditions of the microbial consortium to achieve an optimal coordination between carbon source metabolism of the fermenter and extracellular electron transfer of the exoelectrogen, such that lactate, the metabolic product of glucose by the recombinant S. cerevisiae, was continuously supplied to S. oneidensis in a constant level until glucose exhaustion. This metabolic coordination between the fermenter and the exoelectrogen enabled bioelectricity production in a glucose‐fed MFC. Furthermore, a porin protein encoded by oprF gene from Pseudomonas aeruginosa was incorporated into the outer membrane of S. oneidensis to enhance membrane permeability and its hydrophobicity, which in turn facilitated its biofilm formation and power generation. The glucose‐fed MFC inoculated with the recombinant S. cerevisiae‐recombinant S. oneidensis generated a maximum power density of 123.4 mW/m 2 , significantly higher than that of recombinant S. cerevisiae‐wild‐type S. oneidensis (71.5 mW/m 2 ). Our design strategy of synthetic microbial consortia was highly scalable to empower the possibility of a wide range of carbon sources being used in MFCs, e.g., xylose, cellulosic biomass, and recalcitrant wastes. © 2016 American Institute of Chemical Engineers AIChE J , 63: 1830–1838, 2017</description><subject>Biochemical fuel cells</subject><subject>Bioelectricity</subject><subject>Biofilms</subject><subject>Bioreactors</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Consortia</subject><subject>Coordination</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Ethanol</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Fungi</subject><subject>Glucose</subject><subject>Hydrophobicity</subject><subject>Lactic acid</subject><subject>Maximum power density</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Nuclear fuels</subject><subject>OprF gene</subject><subject>Organic wastes</subject><subject>Pseudomonas aeruginosa</subject><subject>Saccharomyces cerevisiae</subject><subject>Shewanella oneidensis</subject><subject>Wastewater treatment</subject><subject>Yeast</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUMlOwzAQtRBIlOXAH1jixCHFS9YjqtikShwK52jijBtXTlzsBNQbBz6Ab-RLMBTNYRa9ZfQIueBszhkT12DUnGc55wdkxrO0SLKKZYdkxhjjSTzwY3ISwiZuoijFjHyudsPY4WgUXYFSHXjX7xQGqtDjmwkGkH5_fNFVh-8woLVA3YCmxSGYCHJDcH40U09xgMZG3tpOygWMHI0t7cy6i-MWvXa-h0Eh7Y3yrjFgqZ7QRh9rz8iRBhvw_L-fkpe72-fFQ7J8un9c3CwTJXM2JrmsINWtYrKBFhrRCg1MM6xYgVLoWAht2hZplipRQSMrzUqUjRSYSdWm8pRc7nW33r1OGMZ64yY_RMual1XGiqws8oi62qPinyF41PXWmx78ruas_g25jiHXfyHLHzfCdhE</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Lin, Tong</creator><creator>Bai, Xue</creator><creator>Hu, Yidan</creator><creator>Li, Bingzhi</creator><creator>Yuan, Ying‐Jin</creator><creator>Song, Hao</creator><creator>Yang, Yun</creator><creator>Wang, Jingyu</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170601</creationdate><title>Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell</title><author>Lin, Tong ; Bai, Xue ; Hu, Yidan ; Li, Bingzhi ; Yuan, Ying‐Jin ; Song, Hao ; Yang, Yun ; Wang, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-639a4fdc03badab2d2fa0f0e907e32f2f2ead4d7454c29ab39f08e3b32e53cd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemical fuel cells</topic><topic>Bioelectricity</topic><topic>Biofilms</topic><topic>Bioreactors</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Consortia</topic><topic>Coordination</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Ethanol</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Fungi</topic><topic>Glucose</topic><topic>Hydrophobicity</topic><topic>Lactic acid</topic><topic>Maximum power density</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Nuclear fuels</topic><topic>OprF gene</topic><topic>Organic wastes</topic><topic>Pseudomonas aeruginosa</topic><topic>Saccharomyces cerevisiae</topic><topic>Shewanella oneidensis</topic><topic>Wastewater treatment</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Hu, Yidan</creatorcontrib><creatorcontrib>Li, Bingzhi</creatorcontrib><creatorcontrib>Yuan, Ying‐Jin</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Yang, Yun</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Tong</au><au>Bai, Xue</au><au>Hu, Yidan</au><au>Li, Bingzhi</au><au>Yuan, Ying‐Jin</au><au>Song, Hao</au><au>Yang, Yun</au><au>Wang, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell</atitle><jtitle>AIChE journal</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>63</volume><issue>6</issue><spage>1830</spage><epage>1838</epage><pages>1830-1838</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon sources. To expand the carbon source range being used in MFCs, we herein rationally designed a glucose‐fed fungus‐bacteria microbial consortium including a fermenter (Saccharomyces cerevisiae) in which the ethanol pathway was knocked out and the lactic acid biosynthesis pathway from Bovin was introduced into S. cerevisiae, and an exoelectrogen (Shewanella oneidensis MR‐1). We optimized the co‐culturing conditions of the microbial consortium to achieve an optimal coordination between carbon source metabolism of the fermenter and extracellular electron transfer of the exoelectrogen, such that lactate, the metabolic product of glucose by the recombinant S. cerevisiae, was continuously supplied to S. oneidensis in a constant level until glucose exhaustion. This metabolic coordination between the fermenter and the exoelectrogen enabled bioelectricity production in a glucose‐fed MFC. Furthermore, a porin protein encoded by oprF gene from Pseudomonas aeruginosa was incorporated into the outer membrane of S. oneidensis to enhance membrane permeability and its hydrophobicity, which in turn facilitated its biofilm formation and power generation. The glucose‐fed MFC inoculated with the recombinant S. cerevisiae‐recombinant S. oneidensis generated a maximum power density of 123.4 mW/m 2 , significantly higher than that of recombinant S. cerevisiae‐wild‐type S. oneidensis (71.5 mW/m 2 ). Our design strategy of synthetic microbial consortia was highly scalable to empower the possibility of a wide range of carbon sources being used in MFCs, e.g., xylose, cellulosic biomass, and recalcitrant wastes. © 2016 American Institute of Chemical Engineers AIChE J , 63: 1830–1838, 2017</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15611</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2017-06, Vol.63 (6), p.1830-1838
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_1895075876
source Access via Wiley Online Library
subjects Biochemical fuel cells
Bioelectricity
Biofilms
Bioreactors
Biosynthesis
Carbon
Carbon sources
Consortia
Coordination
Electrochemistry
Electron transfer
Ethanol
Fuel cells
Fuel technology
Fungi
Glucose
Hydrophobicity
Lactic acid
Maximum power density
Membrane permeability
Membranes
Metabolism
Microorganisms
Nuclear fuels
OprF gene
Organic wastes
Pseudomonas aeruginosa
Saccharomyces cerevisiae
Shewanella oneidensis
Wastewater treatment
Yeast
title Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Saccharomyces%20cerevisiae%20%E2%80%90%20Shewanella%20oneidensis%20consortium%20enables%20glucose%E2%80%90fed%20high%E2%80%90performance%20microbial%20fuel%20cell&rft.jtitle=AIChE%20journal&rft.au=Lin,%20Tong&rft.date=2017-06-01&rft.volume=63&rft.issue=6&rft.spage=1830&rft.epage=1838&rft.pages=1830-1838&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15611&rft_dat=%3Cproquest_cross%3E1895075876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895075876&rft_id=info:pmid/&rfr_iscdi=true