Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell
Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon s...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2017-06, Vol.63 (6), p.1830-1838 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1838 |
---|---|
container_issue | 6 |
container_start_page | 1830 |
container_title | AIChE journal |
container_volume | 63 |
creator | Lin, Tong Bai, Xue Hu, Yidan Li, Bingzhi Yuan, Ying‐Jin Song, Hao Yang, Yun Wang, Jingyu |
description | Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon sources. To expand the carbon source range being used in MFCs, we herein rationally designed a glucose‐fed fungus‐bacteria microbial consortium including a fermenter (Saccharomyces cerevisiae) in which the ethanol pathway was knocked out and the lactic acid biosynthesis pathway from Bovin was introduced into S. cerevisiae, and an exoelectrogen (Shewanella oneidensis MR‐1). We optimized the co‐culturing conditions of the microbial consortium to achieve an optimal coordination between carbon source metabolism of the fermenter and extracellular electron transfer of the exoelectrogen, such that lactate, the metabolic product of glucose by the recombinant S. cerevisiae, was continuously supplied to S. oneidensis in a constant level until glucose exhaustion. This metabolic coordination between the fermenter and the exoelectrogen enabled bioelectricity production in a glucose‐fed MFC. Furthermore, a porin protein encoded by oprF gene from Pseudomonas aeruginosa was incorporated into the outer membrane of S. oneidensis to enhance membrane permeability and its hydrophobicity, which in turn facilitated its biofilm formation and power generation. The glucose‐fed MFC inoculated with the recombinant S. cerevisiae‐recombinant S. oneidensis generated a maximum power density of 123.4 mW/m
2
, significantly higher than that of recombinant S. cerevisiae‐wild‐type S. oneidensis (71.5 mW/m
2
). Our design strategy of synthetic microbial consortia was highly scalable to empower the possibility of a wide range of carbon sources being used in MFCs, e.g., xylose, cellulosic biomass, and recalcitrant wastes. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 1830–1838, 2017 |
doi_str_mv | 10.1002/aic.15611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1895075876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895075876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-639a4fdc03badab2d2fa0f0e907e32f2f2ead4d7454c29ab39f08e3b32e53cd43</originalsourceid><addsrcrecordid>eNotUMlOwzAQtRBIlOXAH1jixCHFS9YjqtikShwK52jijBtXTlzsBNQbBz6Ab-RLMBTNYRa9ZfQIueBszhkT12DUnGc55wdkxrO0SLKKZYdkxhjjSTzwY3ISwiZuoijFjHyudsPY4WgUXYFSHXjX7xQGqtDjmwkGkH5_fNFVh-8woLVA3YCmxSGYCHJDcH40U09xgMZG3tpOygWMHI0t7cy6i-MWvXa-h0Eh7Y3yrjFgqZ7QRh9rz8iRBhvw_L-fkpe72-fFQ7J8un9c3CwTJXM2JrmsINWtYrKBFhrRCg1MM6xYgVLoWAht2hZplipRQSMrzUqUjRSYSdWm8pRc7nW33r1OGMZ64yY_RMual1XGiqws8oi62qPinyF41PXWmx78ruas_g25jiHXfyHLHzfCdhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895075876</pqid></control><display><type>article</type><title>Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell</title><source>Access via Wiley Online Library</source><creator>Lin, Tong ; Bai, Xue ; Hu, Yidan ; Li, Bingzhi ; Yuan, Ying‐Jin ; Song, Hao ; Yang, Yun ; Wang, Jingyu</creator><creatorcontrib>Lin, Tong ; Bai, Xue ; Hu, Yidan ; Li, Bingzhi ; Yuan, Ying‐Jin ; Song, Hao ; Yang, Yun ; Wang, Jingyu</creatorcontrib><description>Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon sources. To expand the carbon source range being used in MFCs, we herein rationally designed a glucose‐fed fungus‐bacteria microbial consortium including a fermenter (Saccharomyces cerevisiae) in which the ethanol pathway was knocked out and the lactic acid biosynthesis pathway from Bovin was introduced into S. cerevisiae, and an exoelectrogen (Shewanella oneidensis MR‐1). We optimized the co‐culturing conditions of the microbial consortium to achieve an optimal coordination between carbon source metabolism of the fermenter and extracellular electron transfer of the exoelectrogen, such that lactate, the metabolic product of glucose by the recombinant S. cerevisiae, was continuously supplied to S. oneidensis in a constant level until glucose exhaustion. This metabolic coordination between the fermenter and the exoelectrogen enabled bioelectricity production in a glucose‐fed MFC. Furthermore, a porin protein encoded by oprF gene from Pseudomonas aeruginosa was incorporated into the outer membrane of S. oneidensis to enhance membrane permeability and its hydrophobicity, which in turn facilitated its biofilm formation and power generation. The glucose‐fed MFC inoculated with the recombinant S. cerevisiae‐recombinant S. oneidensis generated a maximum power density of 123.4 mW/m
2
, significantly higher than that of recombinant S. cerevisiae‐wild‐type S. oneidensis (71.5 mW/m
2
). Our design strategy of synthetic microbial consortia was highly scalable to empower the possibility of a wide range of carbon sources being used in MFCs, e.g., xylose, cellulosic biomass, and recalcitrant wastes. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 1830–1838, 2017</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15611</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Biochemical fuel cells ; Bioelectricity ; Biofilms ; Bioreactors ; Biosynthesis ; Carbon ; Carbon sources ; Consortia ; Coordination ; Electrochemistry ; Electron transfer ; Ethanol ; Fuel cells ; Fuel technology ; Fungi ; Glucose ; Hydrophobicity ; Lactic acid ; Maximum power density ; Membrane permeability ; Membranes ; Metabolism ; Microorganisms ; Nuclear fuels ; OprF gene ; Organic wastes ; Pseudomonas aeruginosa ; Saccharomyces cerevisiae ; Shewanella oneidensis ; Wastewater treatment ; Yeast</subject><ispartof>AIChE journal, 2017-06, Vol.63 (6), p.1830-1838</ispartof><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-639a4fdc03badab2d2fa0f0e907e32f2f2ead4d7454c29ab39f08e3b32e53cd43</citedby><cites>FETCH-LOGICAL-c360t-639a4fdc03badab2d2fa0f0e907e32f2f2ead4d7454c29ab39f08e3b32e53cd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Hu, Yidan</creatorcontrib><creatorcontrib>Li, Bingzhi</creatorcontrib><creatorcontrib>Yuan, Ying‐Jin</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Yang, Yun</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><title>Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell</title><title>AIChE journal</title><description>Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon sources. To expand the carbon source range being used in MFCs, we herein rationally designed a glucose‐fed fungus‐bacteria microbial consortium including a fermenter (Saccharomyces cerevisiae) in which the ethanol pathway was knocked out and the lactic acid biosynthesis pathway from Bovin was introduced into S. cerevisiae, and an exoelectrogen (Shewanella oneidensis MR‐1). We optimized the co‐culturing conditions of the microbial consortium to achieve an optimal coordination between carbon source metabolism of the fermenter and extracellular electron transfer of the exoelectrogen, such that lactate, the metabolic product of glucose by the recombinant S. cerevisiae, was continuously supplied to S. oneidensis in a constant level until glucose exhaustion. This metabolic coordination between the fermenter and the exoelectrogen enabled bioelectricity production in a glucose‐fed MFC. Furthermore, a porin protein encoded by oprF gene from Pseudomonas aeruginosa was incorporated into the outer membrane of S. oneidensis to enhance membrane permeability and its hydrophobicity, which in turn facilitated its biofilm formation and power generation. The glucose‐fed MFC inoculated with the recombinant S. cerevisiae‐recombinant S. oneidensis generated a maximum power density of 123.4 mW/m
2
, significantly higher than that of recombinant S. cerevisiae‐wild‐type S. oneidensis (71.5 mW/m
2
). Our design strategy of synthetic microbial consortia was highly scalable to empower the possibility of a wide range of carbon sources being used in MFCs, e.g., xylose, cellulosic biomass, and recalcitrant wastes. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 1830–1838, 2017</description><subject>Biochemical fuel cells</subject><subject>Bioelectricity</subject><subject>Biofilms</subject><subject>Bioreactors</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Consortia</subject><subject>Coordination</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Ethanol</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Fungi</subject><subject>Glucose</subject><subject>Hydrophobicity</subject><subject>Lactic acid</subject><subject>Maximum power density</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Nuclear fuels</subject><subject>OprF gene</subject><subject>Organic wastes</subject><subject>Pseudomonas aeruginosa</subject><subject>Saccharomyces cerevisiae</subject><subject>Shewanella oneidensis</subject><subject>Wastewater treatment</subject><subject>Yeast</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUMlOwzAQtRBIlOXAH1jixCHFS9YjqtikShwK52jijBtXTlzsBNQbBz6Ab-RLMBTNYRa9ZfQIueBszhkT12DUnGc55wdkxrO0SLKKZYdkxhjjSTzwY3ISwiZuoijFjHyudsPY4WgUXYFSHXjX7xQGqtDjmwkGkH5_fNFVh-8woLVA3YCmxSGYCHJDcH40U09xgMZG3tpOygWMHI0t7cy6i-MWvXa-h0Eh7Y3yrjFgqZ7QRh9rz8iRBhvw_L-fkpe72-fFQ7J8un9c3CwTJXM2JrmsINWtYrKBFhrRCg1MM6xYgVLoWAht2hZplipRQSMrzUqUjRSYSdWm8pRc7nW33r1OGMZ64yY_RMual1XGiqws8oi62qPinyF41PXWmx78ruas_g25jiHXfyHLHzfCdhE</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Lin, Tong</creator><creator>Bai, Xue</creator><creator>Hu, Yidan</creator><creator>Li, Bingzhi</creator><creator>Yuan, Ying‐Jin</creator><creator>Song, Hao</creator><creator>Yang, Yun</creator><creator>Wang, Jingyu</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170601</creationdate><title>Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell</title><author>Lin, Tong ; Bai, Xue ; Hu, Yidan ; Li, Bingzhi ; Yuan, Ying‐Jin ; Song, Hao ; Yang, Yun ; Wang, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-639a4fdc03badab2d2fa0f0e907e32f2f2ead4d7454c29ab39f08e3b32e53cd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemical fuel cells</topic><topic>Bioelectricity</topic><topic>Biofilms</topic><topic>Bioreactors</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Consortia</topic><topic>Coordination</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Ethanol</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Fungi</topic><topic>Glucose</topic><topic>Hydrophobicity</topic><topic>Lactic acid</topic><topic>Maximum power density</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Nuclear fuels</topic><topic>OprF gene</topic><topic>Organic wastes</topic><topic>Pseudomonas aeruginosa</topic><topic>Saccharomyces cerevisiae</topic><topic>Shewanella oneidensis</topic><topic>Wastewater treatment</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Hu, Yidan</creatorcontrib><creatorcontrib>Li, Bingzhi</creatorcontrib><creatorcontrib>Yuan, Ying‐Jin</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Yang, Yun</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Tong</au><au>Bai, Xue</au><au>Hu, Yidan</au><au>Li, Bingzhi</au><au>Yuan, Ying‐Jin</au><au>Song, Hao</au><au>Yang, Yun</au><au>Wang, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell</atitle><jtitle>AIChE journal</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>63</volume><issue>6</issue><spage>1830</spage><epage>1838</epage><pages>1830-1838</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Microbial fuel cells (MFCs) were green and sustainable bio‐electrochemical reactors for simultaneous wastewater treatment and electricity harvest from organic wastes. However, exoelectrogens, such as Shewanella and Geobacter being widely studied in MFCs, could only use a limited spectrum of carbon sources. To expand the carbon source range being used in MFCs, we herein rationally designed a glucose‐fed fungus‐bacteria microbial consortium including a fermenter (Saccharomyces cerevisiae) in which the ethanol pathway was knocked out and the lactic acid biosynthesis pathway from Bovin was introduced into S. cerevisiae, and an exoelectrogen (Shewanella oneidensis MR‐1). We optimized the co‐culturing conditions of the microbial consortium to achieve an optimal coordination between carbon source metabolism of the fermenter and extracellular electron transfer of the exoelectrogen, such that lactate, the metabolic product of glucose by the recombinant S. cerevisiae, was continuously supplied to S. oneidensis in a constant level until glucose exhaustion. This metabolic coordination between the fermenter and the exoelectrogen enabled bioelectricity production in a glucose‐fed MFC. Furthermore, a porin protein encoded by oprF gene from Pseudomonas aeruginosa was incorporated into the outer membrane of S. oneidensis to enhance membrane permeability and its hydrophobicity, which in turn facilitated its biofilm formation and power generation. The glucose‐fed MFC inoculated with the recombinant S. cerevisiae‐recombinant S. oneidensis generated a maximum power density of 123.4 mW/m
2
, significantly higher than that of recombinant S. cerevisiae‐wild‐type S. oneidensis (71.5 mW/m
2
). Our design strategy of synthetic microbial consortia was highly scalable to empower the possibility of a wide range of carbon sources being used in MFCs, e.g., xylose, cellulosic biomass, and recalcitrant wastes. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 1830–1838, 2017</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15611</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2017-06, Vol.63 (6), p.1830-1838 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_1895075876 |
source | Access via Wiley Online Library |
subjects | Biochemical fuel cells Bioelectricity Biofilms Bioreactors Biosynthesis Carbon Carbon sources Consortia Coordination Electrochemistry Electron transfer Ethanol Fuel cells Fuel technology Fungi Glucose Hydrophobicity Lactic acid Maximum power density Membrane permeability Membranes Metabolism Microorganisms Nuclear fuels OprF gene Organic wastes Pseudomonas aeruginosa Saccharomyces cerevisiae Shewanella oneidensis Wastewater treatment Yeast |
title | Synthetic Saccharomyces cerevisiae ‐ Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Saccharomyces%20cerevisiae%20%E2%80%90%20Shewanella%20oneidensis%20consortium%20enables%20glucose%E2%80%90fed%20high%E2%80%90performance%20microbial%20fuel%20cell&rft.jtitle=AIChE%20journal&rft.au=Lin,%20Tong&rft.date=2017-06-01&rft.volume=63&rft.issue=6&rft.spage=1830&rft.epage=1838&rft.pages=1830-1838&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15611&rft_dat=%3Cproquest_cross%3E1895075876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895075876&rft_id=info:pmid/&rfr_iscdi=true |