Simulation of dry reforming of methane in a conventional downfired reformer

A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2017-06, Vol.63 (6), p.2060-2071
Hauptverfasser: Zhao, Yutian R., Latham, Dean A., Peppley, Brant A., McAuley, Kim B., Wang, Hui, LeHoux, Rick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2071
container_issue 6
container_start_page 2060
container_title AIChE journal
container_volume 63
creator Zhao, Yutian R.
Latham, Dean A.
Peppley, Brant A.
McAuley, Kim B.
Wang, Hui
LeHoux, Rick
description A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas composition profiles over the length of the tubes. Radiative heat transfer is modeled by Hottel Zone method. Material and energy balances are solved numerically using Newton‐Raphson solver. Kinetic models for two different DRM catalysts are applied in the model for comparison. Simulation results show that water–gas shift reaction is important in DRM and addition of steam in the feed of process gas is beneficial for industrial production. © 2016 American Institute of Chemical Engineers AIChE J , 63: 2060–2071, 2017
doi_str_mv 10.1002/aic.15582
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1895070601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895070601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-eda26f492e8af4d00b236313705dcfac45fb36eee137146c5c853af7d56d62d03</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsH_0HAk4etk2ST3T1K0SoWPKjnkOZDU7pJTXaV_ntT29MwL88MLw9C1wRmBIDeKa9nhPOWnqAJ4XVT8Q74KZoAAKlKQM7RRc7rstGmpRP08ub7caMGHwOODpu0w8m6mHofPvdBb4cvFSz2ASusY_ixYc-qDTbxNzifrDke2HSJzpzaZHt1nFP08fjwPn-qlq-L5_n9stK0q4fKGkWFqztqW-VqA7CiTDDCGuBGO6Vr7lZMWGtLRGqhuW45U64xXBhBDbApujn83ab4Pdo8yHUcU-mUJWk7Dg0IIIW6PVA6xZxLR7lNvldpJwnIvStZXMl_V-wPv05ccw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895070601</pqid></control><display><type>article</type><title>Simulation of dry reforming of methane in a conventional downfired reformer</title><source>Wiley Online Library All Journals</source><creator>Zhao, Yutian R. ; Latham, Dean A. ; Peppley, Brant A. ; McAuley, Kim B. ; Wang, Hui ; LeHoux, Rick</creator><creatorcontrib>Zhao, Yutian R. ; Latham, Dean A. ; Peppley, Brant A. ; McAuley, Kim B. ; Wang, Hui ; LeHoux, Rick</creatorcontrib><description>A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas composition profiles over the length of the tubes. Radiative heat transfer is modeled by Hottel Zone method. Material and energy balances are solved numerically using Newton‐Raphson solver. Kinetic models for two different DRM catalysts are applied in the model for comparison. Simulation results show that water–gas shift reaction is important in DRM and addition of steam in the feed of process gas is beneficial for industrial production. © 2016 American Institute of Chemical Engineers AIChE J , 63: 2060–2071, 2017</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15582</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Catalysts ; Energy balance ; Gas composition ; Heat transfer ; Industrial production ; Methane ; Radiative heat transfer ; Reforming ; Shift reaction ; Simulation ; Steam ; Temperature profiles ; Tubes</subject><ispartof>AIChE journal, 2017-06, Vol.63 (6), p.2060-2071</ispartof><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-eda26f492e8af4d00b236313705dcfac45fb36eee137146c5c853af7d56d62d03</citedby><cites>FETCH-LOGICAL-c294t-eda26f492e8af4d00b236313705dcfac45fb36eee137146c5c853af7d56d62d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Yutian R.</creatorcontrib><creatorcontrib>Latham, Dean A.</creatorcontrib><creatorcontrib>Peppley, Brant A.</creatorcontrib><creatorcontrib>McAuley, Kim B.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>LeHoux, Rick</creatorcontrib><title>Simulation of dry reforming of methane in a conventional downfired reformer</title><title>AIChE journal</title><description>A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas composition profiles over the length of the tubes. Radiative heat transfer is modeled by Hottel Zone method. Material and energy balances are solved numerically using Newton‐Raphson solver. Kinetic models for two different DRM catalysts are applied in the model for comparison. Simulation results show that water–gas shift reaction is important in DRM and addition of steam in the feed of process gas is beneficial for industrial production. © 2016 American Institute of Chemical Engineers AIChE J , 63: 2060–2071, 2017</description><subject>Catalysts</subject><subject>Energy balance</subject><subject>Gas composition</subject><subject>Heat transfer</subject><subject>Industrial production</subject><subject>Methane</subject><subject>Radiative heat transfer</subject><subject>Reforming</subject><subject>Shift reaction</subject><subject>Simulation</subject><subject>Steam</subject><subject>Temperature profiles</subject><subject>Tubes</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsH_0HAk4etk2ST3T1K0SoWPKjnkOZDU7pJTXaV_ntT29MwL88MLw9C1wRmBIDeKa9nhPOWnqAJ4XVT8Q74KZoAAKlKQM7RRc7rstGmpRP08ub7caMGHwOODpu0w8m6mHofPvdBb4cvFSz2ASusY_ixYc-qDTbxNzifrDke2HSJzpzaZHt1nFP08fjwPn-qlq-L5_n9stK0q4fKGkWFqztqW-VqA7CiTDDCGuBGO6Vr7lZMWGtLRGqhuW45U64xXBhBDbApujn83ab4Pdo8yHUcU-mUJWk7Dg0IIIW6PVA6xZxLR7lNvldpJwnIvStZXMl_V-wPv05ccw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Zhao, Yutian R.</creator><creator>Latham, Dean A.</creator><creator>Peppley, Brant A.</creator><creator>McAuley, Kim B.</creator><creator>Wang, Hui</creator><creator>LeHoux, Rick</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170601</creationdate><title>Simulation of dry reforming of methane in a conventional downfired reformer</title><author>Zhao, Yutian R. ; Latham, Dean A. ; Peppley, Brant A. ; McAuley, Kim B. ; Wang, Hui ; LeHoux, Rick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-eda26f492e8af4d00b236313705dcfac45fb36eee137146c5c853af7d56d62d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysts</topic><topic>Energy balance</topic><topic>Gas composition</topic><topic>Heat transfer</topic><topic>Industrial production</topic><topic>Methane</topic><topic>Radiative heat transfer</topic><topic>Reforming</topic><topic>Shift reaction</topic><topic>Simulation</topic><topic>Steam</topic><topic>Temperature profiles</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yutian R.</creatorcontrib><creatorcontrib>Latham, Dean A.</creatorcontrib><creatorcontrib>Peppley, Brant A.</creatorcontrib><creatorcontrib>McAuley, Kim B.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>LeHoux, Rick</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yutian R.</au><au>Latham, Dean A.</au><au>Peppley, Brant A.</au><au>McAuley, Kim B.</au><au>Wang, Hui</au><au>LeHoux, Rick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of dry reforming of methane in a conventional downfired reformer</atitle><jtitle>AIChE journal</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>63</volume><issue>6</issue><spage>2060</spage><epage>2071</epage><pages>2060-2071</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas composition profiles over the length of the tubes. Radiative heat transfer is modeled by Hottel Zone method. Material and energy balances are solved numerically using Newton‐Raphson solver. Kinetic models for two different DRM catalysts are applied in the model for comparison. Simulation results show that water–gas shift reaction is important in DRM and addition of steam in the feed of process gas is beneficial for industrial production. © 2016 American Institute of Chemical Engineers AIChE J , 63: 2060–2071, 2017</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15582</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2017-06, Vol.63 (6), p.2060-2071
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_1895070601
source Wiley Online Library All Journals
subjects Catalysts
Energy balance
Gas composition
Heat transfer
Industrial production
Methane
Radiative heat transfer
Reforming
Shift reaction
Simulation
Steam
Temperature profiles
Tubes
title Simulation of dry reforming of methane in a conventional downfired reformer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20dry%20reforming%20of%20methane%20in%20a%20conventional%20downfired%20reformer&rft.jtitle=AIChE%20journal&rft.au=Zhao,%20Yutian%20R.&rft.date=2017-06-01&rft.volume=63&rft.issue=6&rft.spage=2060&rft.epage=2071&rft.pages=2060-2071&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15582&rft_dat=%3Cproquest_cross%3E1895070601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895070601&rft_id=info:pmid/&rfr_iscdi=true