Simulation of dry reforming of methane in a conventional downfired reformer
A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2017-06, Vol.63 (6), p.2060-2071 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2071 |
---|---|
container_issue | 6 |
container_start_page | 2060 |
container_title | AIChE journal |
container_volume | 63 |
creator | Zhao, Yutian R. Latham, Dean A. Peppley, Brant A. McAuley, Kim B. Wang, Hui LeHoux, Rick |
description | A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas composition profiles over the length of the tubes. Radiative heat transfer is modeled by Hottel Zone method. Material and energy balances are solved numerically using Newton‐Raphson solver. Kinetic models for two different DRM catalysts are applied in the model for comparison. Simulation results show that water–gas shift reaction is important in DRM and addition of steam in the feed of process gas is beneficial for industrial production. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 2060–2071, 2017 |
doi_str_mv | 10.1002/aic.15582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1895070601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895070601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-eda26f492e8af4d00b236313705dcfac45fb36eee137146c5c853af7d56d62d03</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsH_0HAk4etk2ST3T1K0SoWPKjnkOZDU7pJTXaV_ntT29MwL88MLw9C1wRmBIDeKa9nhPOWnqAJ4XVT8Q74KZoAAKlKQM7RRc7rstGmpRP08ub7caMGHwOODpu0w8m6mHofPvdBb4cvFSz2ASusY_ixYc-qDTbxNzifrDke2HSJzpzaZHt1nFP08fjwPn-qlq-L5_n9stK0q4fKGkWFqztqW-VqA7CiTDDCGuBGO6Vr7lZMWGtLRGqhuW45U64xXBhBDbApujn83ab4Pdo8yHUcU-mUJWk7Dg0IIIW6PVA6xZxLR7lNvldpJwnIvStZXMl_V-wPv05ccw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895070601</pqid></control><display><type>article</type><title>Simulation of dry reforming of methane in a conventional downfired reformer</title><source>Wiley Online Library All Journals</source><creator>Zhao, Yutian R. ; Latham, Dean A. ; Peppley, Brant A. ; McAuley, Kim B. ; Wang, Hui ; LeHoux, Rick</creator><creatorcontrib>Zhao, Yutian R. ; Latham, Dean A. ; Peppley, Brant A. ; McAuley, Kim B. ; Wang, Hui ; LeHoux, Rick</creatorcontrib><description>A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas composition profiles over the length of the tubes. Radiative heat transfer is modeled by Hottel Zone method. Material and energy balances are solved numerically using Newton‐Raphson solver. Kinetic models for two different DRM catalysts are applied in the model for comparison. Simulation results show that water–gas shift reaction is important in DRM and addition of steam in the feed of process gas is beneficial for industrial production. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 2060–2071, 2017</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15582</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Catalysts ; Energy balance ; Gas composition ; Heat transfer ; Industrial production ; Methane ; Radiative heat transfer ; Reforming ; Shift reaction ; Simulation ; Steam ; Temperature profiles ; Tubes</subject><ispartof>AIChE journal, 2017-06, Vol.63 (6), p.2060-2071</ispartof><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-eda26f492e8af4d00b236313705dcfac45fb36eee137146c5c853af7d56d62d03</citedby><cites>FETCH-LOGICAL-c294t-eda26f492e8af4d00b236313705dcfac45fb36eee137146c5c853af7d56d62d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Yutian R.</creatorcontrib><creatorcontrib>Latham, Dean A.</creatorcontrib><creatorcontrib>Peppley, Brant A.</creatorcontrib><creatorcontrib>McAuley, Kim B.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>LeHoux, Rick</creatorcontrib><title>Simulation of dry reforming of methane in a conventional downfired reformer</title><title>AIChE journal</title><description>A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas composition profiles over the length of the tubes. Radiative heat transfer is modeled by Hottel Zone method. Material and energy balances are solved numerically using Newton‐Raphson solver. Kinetic models for two different DRM catalysts are applied in the model for comparison. Simulation results show that water–gas shift reaction is important in DRM and addition of steam in the feed of process gas is beneficial for industrial production. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 2060–2071, 2017</description><subject>Catalysts</subject><subject>Energy balance</subject><subject>Gas composition</subject><subject>Heat transfer</subject><subject>Industrial production</subject><subject>Methane</subject><subject>Radiative heat transfer</subject><subject>Reforming</subject><subject>Shift reaction</subject><subject>Simulation</subject><subject>Steam</subject><subject>Temperature profiles</subject><subject>Tubes</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsH_0HAk4etk2ST3T1K0SoWPKjnkOZDU7pJTXaV_ntT29MwL88MLw9C1wRmBIDeKa9nhPOWnqAJ4XVT8Q74KZoAAKlKQM7RRc7rstGmpRP08ub7caMGHwOODpu0w8m6mHofPvdBb4cvFSz2ASusY_ixYc-qDTbxNzifrDke2HSJzpzaZHt1nFP08fjwPn-qlq-L5_n9stK0q4fKGkWFqztqW-VqA7CiTDDCGuBGO6Vr7lZMWGtLRGqhuW45U64xXBhBDbApujn83ab4Pdo8yHUcU-mUJWk7Dg0IIIW6PVA6xZxLR7lNvldpJwnIvStZXMl_V-wPv05ccw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Zhao, Yutian R.</creator><creator>Latham, Dean A.</creator><creator>Peppley, Brant A.</creator><creator>McAuley, Kim B.</creator><creator>Wang, Hui</creator><creator>LeHoux, Rick</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170601</creationdate><title>Simulation of dry reforming of methane in a conventional downfired reformer</title><author>Zhao, Yutian R. ; Latham, Dean A. ; Peppley, Brant A. ; McAuley, Kim B. ; Wang, Hui ; LeHoux, Rick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-eda26f492e8af4d00b236313705dcfac45fb36eee137146c5c853af7d56d62d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysts</topic><topic>Energy balance</topic><topic>Gas composition</topic><topic>Heat transfer</topic><topic>Industrial production</topic><topic>Methane</topic><topic>Radiative heat transfer</topic><topic>Reforming</topic><topic>Shift reaction</topic><topic>Simulation</topic><topic>Steam</topic><topic>Temperature profiles</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yutian R.</creatorcontrib><creatorcontrib>Latham, Dean A.</creatorcontrib><creatorcontrib>Peppley, Brant A.</creatorcontrib><creatorcontrib>McAuley, Kim B.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>LeHoux, Rick</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yutian R.</au><au>Latham, Dean A.</au><au>Peppley, Brant A.</au><au>McAuley, Kim B.</au><au>Wang, Hui</au><au>LeHoux, Rick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of dry reforming of methane in a conventional downfired reformer</atitle><jtitle>AIChE journal</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>63</volume><issue>6</issue><spage>2060</spage><epage>2071</epage><pages>2060-2071</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>A model for industrial top‐fired dry reforming of methane (DRM) and for combined dry reforming and steam reforming of methane was developed for the first time. The model calculates and gives predictions on the temperature profiles for fuel gas, tube walls, and process gas, as well as the process gas composition profiles over the length of the tubes. Radiative heat transfer is modeled by Hottel Zone method. Material and energy balances are solved numerically using Newton‐Raphson solver. Kinetic models for two different DRM catalysts are applied in the model for comparison. Simulation results show that water–gas shift reaction is important in DRM and addition of steam in the feed of process gas is beneficial for industrial production. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 2060–2071, 2017</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15582</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2017-06, Vol.63 (6), p.2060-2071 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_1895070601 |
source | Wiley Online Library All Journals |
subjects | Catalysts Energy balance Gas composition Heat transfer Industrial production Methane Radiative heat transfer Reforming Shift reaction Simulation Steam Temperature profiles Tubes |
title | Simulation of dry reforming of methane in a conventional downfired reformer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20dry%20reforming%20of%20methane%20in%20a%20conventional%20downfired%20reformer&rft.jtitle=AIChE%20journal&rft.au=Zhao,%20Yutian%20R.&rft.date=2017-06-01&rft.volume=63&rft.issue=6&rft.spage=2060&rft.epage=2071&rft.pages=2060-2071&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15582&rft_dat=%3Cproquest_cross%3E1895070601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895070601&rft_id=info:pmid/&rfr_iscdi=true |