Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions
We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passa...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2017-03, Vol.58 (2), p.190-204 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | 2 |
container_start_page | 190 |
container_title | Siberian mathematical journal |
container_volume | 58 |
creator | Vinogradov, O. L. |
description | We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels. |
doi_str_mv | 10.1134/S0037446617020021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1891995734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891995734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d7805e70c273c9b197f634c0e989ffcbaf9fa578ff48b4667676aabc8f74bb7b3</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFp9AHckrkcvAx2GpWn8S5q4UNcToGBp6DCFGaOP4FvLWBdNGsPiwr3nfOQehC4JXBNC2c0LAOWMVRXhUAKU5AhNyIzTQpQVHKPJOC7G-Sk6S2kNQAAqMUHfLysZO-xasx2kd70zCdsQsey6GD7dRvYutAkHi3VoP4IfxjfWXqaUlfnarwyORnrsMwPL9NvwbuN6rGUyo_MA3pnowtLpfWY6RydW-mQu_uoUvd3fvc4fi8Xzw9P8dlFoSqq-WPIaZoaDLjnVQhHBbUWZBiNqYa1W0gorZ7y2ltUq78vzkVLp2nKmFFd0iq523LzgdjCpb9ZhiG3-siG1IELk1FhWkZ1Kx5BSNLbpYk4jfjUEmjHx5iDx7Cl3npS17buJe-R_TT-nBYYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891995734</pqid></control><display><type>article</type><title>Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions</title><source>SpringerLink Journals</source><creator>Vinogradov, O. L.</creator><creatorcontrib>Vinogradov, O. L.</creatorcontrib><description>We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446617020021</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Convolution ; Entire functions ; Estimates ; Inequalities ; Kernels ; Mathematics ; Mathematics and Statistics ; Test procedures</subject><ispartof>Siberian mathematical journal, 2017-03, Vol.58 (2), p.190-204</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d7805e70c273c9b197f634c0e989ffcbaf9fa578ff48b4667676aabc8f74bb7b3</citedby><cites>FETCH-LOGICAL-c316t-d7805e70c273c9b197f634c0e989ffcbaf9fa578ff48b4667676aabc8f74bb7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446617020021$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446617020021$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Vinogradov, O. L.</creatorcontrib><title>Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.</description><subject>Convolution</subject><subject>Entire functions</subject><subject>Estimates</subject><subject>Inequalities</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Test procedures</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEUhYnRxFp9AHckrkcvAx2GpWn8S5q4UNcToGBp6DCFGaOP4FvLWBdNGsPiwr3nfOQehC4JXBNC2c0LAOWMVRXhUAKU5AhNyIzTQpQVHKPJOC7G-Sk6S2kNQAAqMUHfLysZO-xasx2kd70zCdsQsey6GD7dRvYutAkHi3VoP4IfxjfWXqaUlfnarwyORnrsMwPL9NvwbuN6rGUyo_MA3pnowtLpfWY6RydW-mQu_uoUvd3fvc4fi8Xzw9P8dlFoSqq-WPIaZoaDLjnVQhHBbUWZBiNqYa1W0gorZ7y2ltUq78vzkVLp2nKmFFd0iq523LzgdjCpb9ZhiG3-siG1IELk1FhWkZ1Kx5BSNLbpYk4jfjUEmjHx5iDx7Cl3npS17buJe-R_TT-nBYYA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Vinogradov, O. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions</title><author>Vinogradov, O. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d7805e70c273c9b197f634c0e989ffcbaf9fa578ff48b4667676aabc8f74bb7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convolution</topic><topic>Entire functions</topic><topic>Estimates</topic><topic>Inequalities</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinogradov, O. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinogradov, O. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>58</volume><issue>2</issue><spage>190</spage><epage>204</epage><pages>190-204</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446617020021</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2017-03, Vol.58 (2), p.190-204 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_1891995734 |
source | SpringerLink Journals |
subjects | Convolution Entire functions Estimates Inequalities Kernels Mathematics Mathematics and Statistics Test procedures |
title | Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20inequalities%20for%20approximations%20of%20convolution%20classes%20on%20the%20real%20line%20as%20the%20limit%20case%20of%20inequalities%20for%20periodic%20convolutions&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Vinogradov,%20O.%20L.&rft.date=2017-03-01&rft.volume=58&rft.issue=2&rft.spage=190&rft.epage=204&rft.pages=190-204&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446617020021&rft_dat=%3Cproquest_cross%3E1891995734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891995734&rft_id=info:pmid/&rfr_iscdi=true |