Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions

We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2017-03, Vol.58 (2), p.190-204
1. Verfasser: Vinogradov, O. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 2
container_start_page 190
container_title Siberian mathematical journal
container_volume 58
creator Vinogradov, O. L.
description We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.
doi_str_mv 10.1134/S0037446617020021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1891995734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891995734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d7805e70c273c9b197f634c0e989ffcbaf9fa578ff48b4667676aabc8f74bb7b3</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFp9AHckrkcvAx2GpWn8S5q4UNcToGBp6DCFGaOP4FvLWBdNGsPiwr3nfOQehC4JXBNC2c0LAOWMVRXhUAKU5AhNyIzTQpQVHKPJOC7G-Sk6S2kNQAAqMUHfLysZO-xasx2kd70zCdsQsey6GD7dRvYutAkHi3VoP4IfxjfWXqaUlfnarwyORnrsMwPL9NvwbuN6rGUyo_MA3pnowtLpfWY6RydW-mQu_uoUvd3fvc4fi8Xzw9P8dlFoSqq-WPIaZoaDLjnVQhHBbUWZBiNqYa1W0gorZ7y2ltUq78vzkVLp2nKmFFd0iq523LzgdjCpb9ZhiG3-siG1IELk1FhWkZ1Kx5BSNLbpYk4jfjUEmjHx5iDx7Cl3npS17buJe-R_TT-nBYYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891995734</pqid></control><display><type>article</type><title>Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions</title><source>SpringerLink Journals</source><creator>Vinogradov, O. L.</creator><creatorcontrib>Vinogradov, O. L.</creatorcontrib><description>We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446617020021</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Convolution ; Entire functions ; Estimates ; Inequalities ; Kernels ; Mathematics ; Mathematics and Statistics ; Test procedures</subject><ispartof>Siberian mathematical journal, 2017-03, Vol.58 (2), p.190-204</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d7805e70c273c9b197f634c0e989ffcbaf9fa578ff48b4667676aabc8f74bb7b3</citedby><cites>FETCH-LOGICAL-c316t-d7805e70c273c9b197f634c0e989ffcbaf9fa578ff48b4667676aabc8f74bb7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446617020021$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446617020021$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Vinogradov, O. L.</creatorcontrib><title>Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.</description><subject>Convolution</subject><subject>Entire functions</subject><subject>Estimates</subject><subject>Inequalities</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Test procedures</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEUhYnRxFp9AHckrkcvAx2GpWn8S5q4UNcToGBp6DCFGaOP4FvLWBdNGsPiwr3nfOQehC4JXBNC2c0LAOWMVRXhUAKU5AhNyIzTQpQVHKPJOC7G-Sk6S2kNQAAqMUHfLysZO-xasx2kd70zCdsQsey6GD7dRvYutAkHi3VoP4IfxjfWXqaUlfnarwyORnrsMwPL9NvwbuN6rGUyo_MA3pnowtLpfWY6RydW-mQu_uoUvd3fvc4fi8Xzw9P8dlFoSqq-WPIaZoaDLjnVQhHBbUWZBiNqYa1W0gorZ7y2ltUq78vzkVLp2nKmFFd0iq523LzgdjCpb9ZhiG3-siG1IELk1FhWkZ1Kx5BSNLbpYk4jfjUEmjHx5iDx7Cl3npS17buJe-R_TT-nBYYA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Vinogradov, O. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions</title><author>Vinogradov, O. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d7805e70c273c9b197f634c0e989ffcbaf9fa578ff48b4667676aabc8f74bb7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convolution</topic><topic>Entire functions</topic><topic>Estimates</topic><topic>Inequalities</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinogradov, O. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinogradov, O. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>58</volume><issue>2</issue><spage>190</spage><epage>204</epage><pages>190-204</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446617020021</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2017-03, Vol.58 (2), p.190-204
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_1891995734
source SpringerLink Journals
subjects Convolution
Entire functions
Estimates
Inequalities
Kernels
Mathematics
Mathematics and Statistics
Test procedures
title Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20inequalities%20for%20approximations%20of%20convolution%20classes%20on%20the%20real%20line%20as%20the%20limit%20case%20of%20inequalities%20for%20periodic%20convolutions&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Vinogradov,%20O.%20L.&rft.date=2017-03-01&rft.volume=58&rft.issue=2&rft.spage=190&rft.epage=204&rft.pages=190-204&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446617020021&rft_dat=%3Cproquest_cross%3E1891995734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891995734&rft_id=info:pmid/&rfr_iscdi=true