Using warm accumulative roll bonding method to produce Al-Al2O3 metal matrix composite

In this study, warm accumulative roll bonding process has been used to produce metal matrix composite (Al/1% Al2O3). The microstructure and mechanical properties of composites have been studied after different warm accumulative roll bonding cycles by tensile test, Vickers micro-hardness test and sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2017-04, Vol.231 (5), p.889-896
Hauptverfasser: Farhadipour, Pedram, Sedighi, M, vini, Mohammad Heydari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue 5
container_start_page 889
container_title Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture
container_volume 231
creator Farhadipour, Pedram
Sedighi, M
vini, Mohammad Heydari
description In this study, warm accumulative roll bonding process has been used to produce metal matrix composite (Al/1% Al2O3). The microstructure and mechanical properties of composites have been studied after different warm accumulative roll bonding cycles by tensile test, Vickers micro-hardness test and scanning electron microscopy. The scanning electron microscopy results reveal that during higher warm accumulative roll bonding cycles, the layers of alumina particles are broken. It leads to the generation of elongated dense clusters with smaller sizes. This microstructure evolution leads to improve the hardness, strength and elongation during the accumulative roll bonding process. The results demonstrated that the dispersed alumina clusters improve both the strength and toughness of the composites. Also, an extra pass of cold rolling on the final warm accumulative roll bonding product shows the ability to obtain further strength. In general, warm accumulative roll bonding process would allow fabricating metal particle reinforced with high uniformity, good mechanical properties and high bonding strength.
doi_str_mv 10.1177/0954405417703421
format Article
fullrecord <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_journals_1891918089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954405417703421</sage_id><sourcerecordid>1891918089</sourcerecordid><originalsourceid>FETCH-LOGICAL-p221t-fbb98ddb6dfd21ad4ae9fa5ef2eb3a044ef1179373f7a3f55688526b2b2c1ff83</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EEqWwM1piNvgzsceqAopUqQtljezYLqmcOMQO8OeTqAyIW-6k39PduwfALcH3hJTlA1aCcyz4NGPGKTkDC4o5QVSV4hwsZoxmfgmuUjriqUrGFuBtn5ruAL_00EJd12M7Bp2bTweHGAI0sbMzbl1-jxbmCPsh2rF2cBXQKtAdm5EOsNV5aL5hHds-pia7a3DhdUju5rcvwf7p8XW9Qdvd88t6tUU9pSQjb4yS1prCekuJtlw75bVwnjrDNObc-ek5xUrmS828EIWUghaGGloT7yVbgrvT3snXx-hSro5xHLrpZEWkIopILNWkQidV0gf3R4GrObrqf3TsBxU8YQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891918089</pqid></control><display><type>article</type><title>Using warm accumulative roll bonding method to produce Al-Al2O3 metal matrix composite</title><source>SAGE Journals Online</source><creator>Farhadipour, Pedram ; Sedighi, M ; vini, Mohammad Heydari</creator><creatorcontrib>Farhadipour, Pedram ; Sedighi, M ; vini, Mohammad Heydari</creatorcontrib><description>In this study, warm accumulative roll bonding process has been used to produce metal matrix composite (Al/1% Al2O3). The microstructure and mechanical properties of composites have been studied after different warm accumulative roll bonding cycles by tensile test, Vickers micro-hardness test and scanning electron microscopy. The scanning electron microscopy results reveal that during higher warm accumulative roll bonding cycles, the layers of alumina particles are broken. It leads to the generation of elongated dense clusters with smaller sizes. This microstructure evolution leads to improve the hardness, strength and elongation during the accumulative roll bonding process. The results demonstrated that the dispersed alumina clusters improve both the strength and toughness of the composites. Also, an extra pass of cold rolling on the final warm accumulative roll bonding product shows the ability to obtain further strength. In general, warm accumulative roll bonding process would allow fabricating metal particle reinforced with high uniformity, good mechanical properties and high bonding strength.</description><identifier>ISSN: 0954-4054</identifier><identifier>EISSN: 2041-2975</identifier><identifier>DOI: 10.1177/0954405417703421</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum matrix composites ; Aluminum oxide ; Bonding strength ; Clusters ; Cold rolling ; Diamond pyramid hardness tests ; Mechanical properties ; Metal matrix composites ; Metal particles ; Microstructure ; Particulate composites ; Roll bonding ; Scanning electron microscopy ; Tensile tests</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2017-04, Vol.231 (5), p.889-896</ispartof><rights>IMechE 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954405417703421$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954405417703421$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Farhadipour, Pedram</creatorcontrib><creatorcontrib>Sedighi, M</creatorcontrib><creatorcontrib>vini, Mohammad Heydari</creatorcontrib><title>Using warm accumulative roll bonding method to produce Al-Al2O3 metal matrix composite</title><title>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</title><description>In this study, warm accumulative roll bonding process has been used to produce metal matrix composite (Al/1% Al2O3). The microstructure and mechanical properties of composites have been studied after different warm accumulative roll bonding cycles by tensile test, Vickers micro-hardness test and scanning electron microscopy. The scanning electron microscopy results reveal that during higher warm accumulative roll bonding cycles, the layers of alumina particles are broken. It leads to the generation of elongated dense clusters with smaller sizes. This microstructure evolution leads to improve the hardness, strength and elongation during the accumulative roll bonding process. The results demonstrated that the dispersed alumina clusters improve both the strength and toughness of the composites. Also, an extra pass of cold rolling on the final warm accumulative roll bonding product shows the ability to obtain further strength. In general, warm accumulative roll bonding process would allow fabricating metal particle reinforced with high uniformity, good mechanical properties and high bonding strength.</description><subject>Aluminum matrix composites</subject><subject>Aluminum oxide</subject><subject>Bonding strength</subject><subject>Clusters</subject><subject>Cold rolling</subject><subject>Diamond pyramid hardness tests</subject><subject>Mechanical properties</subject><subject>Metal matrix composites</subject><subject>Metal particles</subject><subject>Microstructure</subject><subject>Particulate composites</subject><subject>Roll bonding</subject><subject>Scanning electron microscopy</subject><subject>Tensile tests</subject><issn>0954-4054</issn><issn>2041-2975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAQxS0EEqWwM1piNvgzsceqAopUqQtljezYLqmcOMQO8OeTqAyIW-6k39PduwfALcH3hJTlA1aCcyz4NGPGKTkDC4o5QVSV4hwsZoxmfgmuUjriqUrGFuBtn5ruAL_00EJd12M7Bp2bTweHGAI0sbMzbl1-jxbmCPsh2rF2cBXQKtAdm5EOsNV5aL5hHds-pia7a3DhdUju5rcvwf7p8XW9Qdvd88t6tUU9pSQjb4yS1prCekuJtlw75bVwnjrDNObc-ek5xUrmS828EIWUghaGGloT7yVbgrvT3snXx-hSro5xHLrpZEWkIopILNWkQidV0gf3R4GrObrqf3TsBxU8YQM</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Farhadipour, Pedram</creator><creator>Sedighi, M</creator><creator>vini, Mohammad Heydari</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201704</creationdate><title>Using warm accumulative roll bonding method to produce Al-Al2O3 metal matrix composite</title><author>Farhadipour, Pedram ; Sedighi, M ; vini, Mohammad Heydari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p221t-fbb98ddb6dfd21ad4ae9fa5ef2eb3a044ef1179373f7a3f55688526b2b2c1ff83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum matrix composites</topic><topic>Aluminum oxide</topic><topic>Bonding strength</topic><topic>Clusters</topic><topic>Cold rolling</topic><topic>Diamond pyramid hardness tests</topic><topic>Mechanical properties</topic><topic>Metal matrix composites</topic><topic>Metal particles</topic><topic>Microstructure</topic><topic>Particulate composites</topic><topic>Roll bonding</topic><topic>Scanning electron microscopy</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farhadipour, Pedram</creatorcontrib><creatorcontrib>Sedighi, M</creatorcontrib><creatorcontrib>vini, Mohammad Heydari</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farhadipour, Pedram</au><au>Sedighi, M</au><au>vini, Mohammad Heydari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using warm accumulative roll bonding method to produce Al-Al2O3 metal matrix composite</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle><date>2017-04</date><risdate>2017</risdate><volume>231</volume><issue>5</issue><spage>889</spage><epage>896</epage><pages>889-896</pages><issn>0954-4054</issn><eissn>2041-2975</eissn><abstract>In this study, warm accumulative roll bonding process has been used to produce metal matrix composite (Al/1% Al2O3). The microstructure and mechanical properties of composites have been studied after different warm accumulative roll bonding cycles by tensile test, Vickers micro-hardness test and scanning electron microscopy. The scanning electron microscopy results reveal that during higher warm accumulative roll bonding cycles, the layers of alumina particles are broken. It leads to the generation of elongated dense clusters with smaller sizes. This microstructure evolution leads to improve the hardness, strength and elongation during the accumulative roll bonding process. The results demonstrated that the dispersed alumina clusters improve both the strength and toughness of the composites. Also, an extra pass of cold rolling on the final warm accumulative roll bonding product shows the ability to obtain further strength. In general, warm accumulative roll bonding process would allow fabricating metal particle reinforced with high uniformity, good mechanical properties and high bonding strength.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954405417703421</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4054
ispartof Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2017-04, Vol.231 (5), p.889-896
issn 0954-4054
2041-2975
language eng
recordid cdi_proquest_journals_1891918089
source SAGE Journals Online
subjects Aluminum matrix composites
Aluminum oxide
Bonding strength
Clusters
Cold rolling
Diamond pyramid hardness tests
Mechanical properties
Metal matrix composites
Metal particles
Microstructure
Particulate composites
Roll bonding
Scanning electron microscopy
Tensile tests
title Using warm accumulative roll bonding method to produce Al-Al2O3 metal matrix composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20warm%20accumulative%20roll%20bonding%20method%20to%20produce%20Al-Al2O3%20metal%20matrix%20composite&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20B,%20Journal%20of%20engineering%20manufacture&rft.au=Farhadipour,%20Pedram&rft.date=2017-04&rft.volume=231&rft.issue=5&rft.spage=889&rft.epage=896&rft.pages=889-896&rft.issn=0954-4054&rft.eissn=2041-2975&rft_id=info:doi/10.1177/0954405417703421&rft_dat=%3Cproquest_sage_%3E1891918089%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891918089&rft_id=info:pmid/&rft_sage_id=10.1177_0954405417703421&rfr_iscdi=true