A hybrid Ant-Wolf Algorithm to optimize assembly sequence planning problem

Purpose This paper aims to optimize the assembly sequence planning (ASP) problem using a proposed hybrid algorithm based on Ant Colony Optimization (ACO) and Gray Wolf Optimizer (GWO). The proposed Hybrid Ant-Wolf Algorithm (HAWA) is designed to overcome premature convergence in ACO. Design/methodol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Assembly automation 2017-01, Vol.37 (2), p.238-248
1. Verfasser: Ab Rashid, Mohd Fadzil Faisae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 2
container_start_page 238
container_title Assembly automation
container_volume 37
creator Ab Rashid, Mohd Fadzil Faisae
description Purpose This paper aims to optimize the assembly sequence planning (ASP) problem using a proposed hybrid algorithm based on Ant Colony Optimization (ACO) and Gray Wolf Optimizer (GWO). The proposed Hybrid Ant-Wolf Algorithm (HAWA) is designed to overcome premature convergence in ACO. Design/methodology/approach The ASP problem is formulated by using task-based representation. The HAWA adopts a global pheromone-updating procedure using the leadership hierarchy concept from the GWO into the ACO to enhance the algorithm performance. In GWO, three leaders are assigned to guide the search direction, instead of a single leader in most of the metaheuristic algorithms. Three assembly case studies used to test the algorithm performance. Findings The proposed HAWA performed better in comparison to the Genetic Algorithm, ACO and GWO because of the balance between exploration and exploitation. The best solution guides the search direction, while the neighboring solutions from leadership hierarchy concept avoid the algorithm trapped in a local optimum. Originality/value The originality of this research is on the proposed HAWA. In addition to the standard pheromone-updating procedure, a global pheromone-updating procedure is introduced, which adopted leadership hierarchy concept from GWO.
doi_str_mv 10.1108/AA-11-2016-143
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_journals_1891702010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082268691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-e743cddf98c062fe1bfda5a0be6ac37a35f8fdd7806621716a69356b74ed1f683</originalsourceid><addsrcrecordid>eNp9kbtOAzEQRS0EEuHRUluidvDYu7a3tCKeikQDorS8azvZaB_B3hTh63EUCgpENc25c0dnELoBOgeg6k5rAkAYBUGg4CdoBrJUpKBSnaIZhaIgJZTFObpIaUNpjjA2Qy8ar_d1bB3Ww0Q-xi5g3a3G2E7rHk8jHrdT27dfHtuUfF93e5z8584Pjcfbzg5DO6zwNo515_srdBZsl_z1z7xE7w_3b4snsnx9fF7oJWm4gol4WfDGuVCphgoWPNTB2dLS2gvbcGl5GVRwTioqBAMJwoqKl6KWhXcQhOKX6Pa4N_fmU9JkNuMuDrnSMKoYE0pU8B8FqgJJsyiaqfmRauKYUvTBbGPb27g3QM3BqtE6T3OwarLVHCDHgO99tJ37g__9Bf4Ngzd2Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891702010</pqid></control><display><type>article</type><title>A hybrid Ant-Wolf Algorithm to optimize assembly sequence planning problem</title><source>Emerald A-Z Current Journals</source><creator>Ab Rashid, Mohd Fadzil Faisae</creator><creatorcontrib>Ab Rashid, Mohd Fadzil Faisae</creatorcontrib><description>Purpose This paper aims to optimize the assembly sequence planning (ASP) problem using a proposed hybrid algorithm based on Ant Colony Optimization (ACO) and Gray Wolf Optimizer (GWO). The proposed Hybrid Ant-Wolf Algorithm (HAWA) is designed to overcome premature convergence in ACO. Design/methodology/approach The ASP problem is formulated by using task-based representation. The HAWA adopts a global pheromone-updating procedure using the leadership hierarchy concept from the GWO into the ACO to enhance the algorithm performance. In GWO, three leaders are assigned to guide the search direction, instead of a single leader in most of the metaheuristic algorithms. Three assembly case studies used to test the algorithm performance. Findings The proposed HAWA performed better in comparison to the Genetic Algorithm, ACO and GWO because of the balance between exploration and exploitation. The best solution guides the search direction, while the neighboring solutions from leadership hierarchy concept avoid the algorithm trapped in a local optimum. Originality/value The originality of this research is on the proposed HAWA. In addition to the standard pheromone-updating procedure, a global pheromone-updating procedure is introduced, which adopted leadership hierarchy concept from GWO.</description><identifier>ISSN: 0144-5154</identifier><identifier>ISSN: 2754-6969</identifier><identifier>EISSN: 1758-4078</identifier><identifier>EISSN: 2754-6977</identifier><identifier>DOI: 10.1108/AA-11-2016-143</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Algorithms ; Ant colony optimization ; Assembly ; Genetic algorithms ; Heuristic methods ; Leadership ; Optimization ; Product development ; Production planning ; Researchers</subject><ispartof>Assembly automation, 2017-01, Vol.37 (2), p.238-248</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-e743cddf98c062fe1bfda5a0be6ac37a35f8fdd7806621716a69356b74ed1f683</citedby><cites>FETCH-LOGICAL-c381t-e743cddf98c062fe1bfda5a0be6ac37a35f8fdd7806621716a69356b74ed1f683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/AA-11-2016-143/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52689</link.rule.ids></links><search><creatorcontrib>Ab Rashid, Mohd Fadzil Faisae</creatorcontrib><title>A hybrid Ant-Wolf Algorithm to optimize assembly sequence planning problem</title><title>Assembly automation</title><description>Purpose This paper aims to optimize the assembly sequence planning (ASP) problem using a proposed hybrid algorithm based on Ant Colony Optimization (ACO) and Gray Wolf Optimizer (GWO). The proposed Hybrid Ant-Wolf Algorithm (HAWA) is designed to overcome premature convergence in ACO. Design/methodology/approach The ASP problem is formulated by using task-based representation. The HAWA adopts a global pheromone-updating procedure using the leadership hierarchy concept from the GWO into the ACO to enhance the algorithm performance. In GWO, three leaders are assigned to guide the search direction, instead of a single leader in most of the metaheuristic algorithms. Three assembly case studies used to test the algorithm performance. Findings The proposed HAWA performed better in comparison to the Genetic Algorithm, ACO and GWO because of the balance between exploration and exploitation. The best solution guides the search direction, while the neighboring solutions from leadership hierarchy concept avoid the algorithm trapped in a local optimum. Originality/value The originality of this research is on the proposed HAWA. In addition to the standard pheromone-updating procedure, a global pheromone-updating procedure is introduced, which adopted leadership hierarchy concept from GWO.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Assembly</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Leadership</subject><subject>Optimization</subject><subject>Product development</subject><subject>Production planning</subject><subject>Researchers</subject><issn>0144-5154</issn><issn>2754-6969</issn><issn>1758-4078</issn><issn>2754-6977</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kbtOAzEQRS0EEuHRUluidvDYu7a3tCKeikQDorS8azvZaB_B3hTh63EUCgpENc25c0dnELoBOgeg6k5rAkAYBUGg4CdoBrJUpKBSnaIZhaIgJZTFObpIaUNpjjA2Qy8ar_d1bB3Ww0Q-xi5g3a3G2E7rHk8jHrdT27dfHtuUfF93e5z8584Pjcfbzg5DO6zwNo515_srdBZsl_z1z7xE7w_3b4snsnx9fF7oJWm4gol4WfDGuVCphgoWPNTB2dLS2gvbcGl5GVRwTioqBAMJwoqKl6KWhXcQhOKX6Pa4N_fmU9JkNuMuDrnSMKoYE0pU8B8FqgJJsyiaqfmRauKYUvTBbGPb27g3QM3BqtE6T3OwarLVHCDHgO99tJ37g__9Bf4Ngzd2Xw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ab Rashid, Mohd Fadzil Faisae</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170101</creationdate><title>A hybrid Ant-Wolf Algorithm to optimize assembly sequence planning problem</title><author>Ab Rashid, Mohd Fadzil Faisae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-e743cddf98c062fe1bfda5a0be6ac37a35f8fdd7806621716a69356b74ed1f683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Assembly</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Leadership</topic><topic>Optimization</topic><topic>Product development</topic><topic>Production planning</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ab Rashid, Mohd Fadzil Faisae</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Assembly automation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ab Rashid, Mohd Fadzil Faisae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid Ant-Wolf Algorithm to optimize assembly sequence planning problem</atitle><jtitle>Assembly automation</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>37</volume><issue>2</issue><spage>238</spage><epage>248</epage><pages>238-248</pages><issn>0144-5154</issn><issn>2754-6969</issn><eissn>1758-4078</eissn><eissn>2754-6977</eissn><abstract>Purpose This paper aims to optimize the assembly sequence planning (ASP) problem using a proposed hybrid algorithm based on Ant Colony Optimization (ACO) and Gray Wolf Optimizer (GWO). The proposed Hybrid Ant-Wolf Algorithm (HAWA) is designed to overcome premature convergence in ACO. Design/methodology/approach The ASP problem is formulated by using task-based representation. The HAWA adopts a global pheromone-updating procedure using the leadership hierarchy concept from the GWO into the ACO to enhance the algorithm performance. In GWO, three leaders are assigned to guide the search direction, instead of a single leader in most of the metaheuristic algorithms. Three assembly case studies used to test the algorithm performance. Findings The proposed HAWA performed better in comparison to the Genetic Algorithm, ACO and GWO because of the balance between exploration and exploitation. The best solution guides the search direction, while the neighboring solutions from leadership hierarchy concept avoid the algorithm trapped in a local optimum. Originality/value The originality of this research is on the proposed HAWA. In addition to the standard pheromone-updating procedure, a global pheromone-updating procedure is introduced, which adopted leadership hierarchy concept from GWO.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/AA-11-2016-143</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-5154
ispartof Assembly automation, 2017-01, Vol.37 (2), p.238-248
issn 0144-5154
2754-6969
1758-4078
2754-6977
language eng
recordid cdi_proquest_journals_1891702010
source Emerald A-Z Current Journals
subjects Algorithms
Ant colony optimization
Assembly
Genetic algorithms
Heuristic methods
Leadership
Optimization
Product development
Production planning
Researchers
title A hybrid Ant-Wolf Algorithm to optimize assembly sequence planning problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20Ant-Wolf%20Algorithm%20to%20optimize%20assembly%20sequence%20planning%20problem&rft.jtitle=Assembly%20automation&rft.au=Ab%20Rashid,%20Mohd%20Fadzil%20Faisae&rft.date=2017-01-01&rft.volume=37&rft.issue=2&rft.spage=238&rft.epage=248&rft.pages=238-248&rft.issn=0144-5154&rft.eissn=1758-4078&rft_id=info:doi/10.1108/AA-11-2016-143&rft_dat=%3Cproquest_emera%3E2082268691%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891702010&rft_id=info:pmid/&rfr_iscdi=true