Analogs of the Globevnik problem on Riemannian two-point homogeneous spaces

On a two-point homogeneous space X , we consider the problem of describing the set of continuous functions having zero integrals over all spheres enclosing the given ball. We obtain the solution of this problem and its generalizations for an annular domain in X . By way of applications, we prove new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2017-03, Vol.101 (3-4), p.417-428
Hauptverfasser: Volchkov, V. V., Volchkov, Vit. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On a two-point homogeneous space X , we consider the problem of describing the set of continuous functions having zero integrals over all spheres enclosing the given ball. We obtain the solution of this problem and its generalizations for an annular domain in X . By way of applications, we prove new uniqueness theorems for functions with zero spherical means.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S000143461703004X