Analogs of the Globevnik problem on Riemannian two-point homogeneous spaces
On a two-point homogeneous space X , we consider the problem of describing the set of continuous functions having zero integrals over all spheres enclosing the given ball. We obtain the solution of this problem and its generalizations for an annular domain in X . By way of applications, we prove new...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2017-03, Vol.101 (3-4), p.417-428 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On a two-point homogeneous space
X
, we consider the problem of describing the set of continuous functions having zero integrals over all spheres enclosing the given ball. We obtain the solution of this problem and its generalizations for an annular domain in
X
. By way of applications, we prove new uniqueness theorems for functions with zero spherical means. |
---|---|
ISSN: | 0001-4346 1067-9073 1573-8876 |
DOI: | 10.1134/S000143461703004X |