Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom
The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from th...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2017-04, Vol.59 (12), p.2034-2040 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2040 |
---|---|
container_issue | 12 |
container_start_page | 2034 |
container_title | Russian physics journal |
container_volume | 59 |
creator | Shamanaev, V. S. Potekaev, A. I. Lisenko, A. A. Krekov, M. G. |
description | The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude. |
doi_str_mv | 10.1007/s11182-017-1011-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1891501389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498129593</galeid><sourcerecordid>A498129593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-be018057b8782ea2fbc16f780c14ead63ee8cd41bd4cf8d9f1d6769d8615db2b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89bMfiV7rKVVoVCweg7ZZFK3bDc1SQ_-e1PWgxeZwwzD-wzDQ8g9sBkwxh8DAIg8Y8AzYAAZuyATqHiRNXkuLtPM6jITQvBrchPCnrFE1XxCVtuoYhdip1VPl6kfVMRAnaXrzihPt91uUH2gb2h71BENtd4daPxEutGoBvrkYnSHW3JlUwzvfvuUfKyW74uXbL15fl3M15kuqipmLTIQrOKt4CJHldtWQ225YBpKVKYuEIU2JbSm1FaYxoKped0YUUNl2rwtpuRhvHv07uuEIcq9O_nzhxJEAxWDQjQpNRtTO9Wj7Abrolc6lcFDp92Atkv7edkIyJuqKRIAI6C9C8GjlUefTPhvCUye_crRr0x-5dmvZInJRyak7LBD_-eVf6Efnbt8jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891501389</pqid></control><display><type>article</type><title>Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shamanaev, V. S. ; Potekaev, A. I. ; Lisenko, A. A. ; Krekov, M. G.</creator><creatorcontrib>Shamanaev, V. S. ; Potekaev, A. I. ; Lisenko, A. A. ; Krekov, M. G.</creatorcontrib><description>The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-017-1011-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Condensed Matter Physics ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Monte Carlo methods ; Nuclear Physics ; Ocean bottom ; Optical Devices ; Optical radar ; Optical thickness ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Remote sensing ; Theoretical</subject><ispartof>Russian physics journal, 2017-04, Vol.59 (12), p.2034-2040</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-be018057b8782ea2fbc16f780c14ead63ee8cd41bd4cf8d9f1d6769d8615db2b3</citedby><cites>FETCH-LOGICAL-c355t-be018057b8782ea2fbc16f780c14ead63ee8cd41bd4cf8d9f1d6769d8615db2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-017-1011-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-017-1011-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shamanaev, V. S.</creatorcontrib><creatorcontrib>Potekaev, A. I.</creatorcontrib><creatorcontrib>Lisenko, A. A.</creatorcontrib><creatorcontrib>Krekov, M. G.</creatorcontrib><title>Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude.</description><subject>Condensed Matter Physics</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Monte Carlo methods</subject><subject>Nuclear Physics</subject><subject>Ocean bottom</subject><subject>Optical Devices</subject><subject>Optical radar</subject><subject>Optical thickness</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Remote sensing</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89bMfiV7rKVVoVCweg7ZZFK3bDc1SQ_-e1PWgxeZwwzD-wzDQ8g9sBkwxh8DAIg8Y8AzYAAZuyATqHiRNXkuLtPM6jITQvBrchPCnrFE1XxCVtuoYhdip1VPl6kfVMRAnaXrzihPt91uUH2gb2h71BENtd4daPxEutGoBvrkYnSHW3JlUwzvfvuUfKyW74uXbL15fl3M15kuqipmLTIQrOKt4CJHldtWQ225YBpKVKYuEIU2JbSm1FaYxoKped0YUUNl2rwtpuRhvHv07uuEIcq9O_nzhxJEAxWDQjQpNRtTO9Wj7Abrolc6lcFDp92Atkv7edkIyJuqKRIAI6C9C8GjlUefTPhvCUye_crRr0x-5dmvZInJRyak7LBD_-eVf6Efnbt8jA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Shamanaev, V. S.</creator><creator>Potekaev, A. I.</creator><creator>Lisenko, A. A.</creator><creator>Krekov, M. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom</title><author>Shamanaev, V. S. ; Potekaev, A. I. ; Lisenko, A. A. ; Krekov, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-be018057b8782ea2fbc16f780c14ead63ee8cd41bd4cf8d9f1d6769d8615db2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed Matter Physics</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Monte Carlo methods</topic><topic>Nuclear Physics</topic><topic>Ocean bottom</topic><topic>Optical Devices</topic><topic>Optical radar</topic><topic>Optical thickness</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Remote sensing</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamanaev, V. S.</creatorcontrib><creatorcontrib>Potekaev, A. I.</creatorcontrib><creatorcontrib>Lisenko, A. A.</creatorcontrib><creatorcontrib>Krekov, M. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamanaev, V. S.</au><au>Potekaev, A. I.</au><au>Lisenko, A. A.</au><au>Krekov, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>59</volume><issue>12</issue><spage>2034</spage><epage>2040</epage><pages>2034-2040</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-017-1011-0</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2017-04, Vol.59 (12), p.2034-2040 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_1891501389 |
source | SpringerLink Journals - AutoHoldings |
subjects | Condensed Matter Physics Hadrons Heavy Ions Lasers Mathematical and Computational Physics Monte Carlo methods Nuclear Physics Ocean bottom Optical Devices Optical radar Optical thickness Optics Photonics Physics Physics and Astronomy Remote sensing Theoretical |
title | Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Estimates%20of%20Lidar%20Signals%20Reflected%20from%20the%20Ocean%20Bottom&rft.jtitle=Russian%20physics%20journal&rft.au=Shamanaev,%20V.%20S.&rft.date=2017-04-01&rft.volume=59&rft.issue=12&rft.spage=2034&rft.epage=2040&rft.pages=2034-2040&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-017-1011-0&rft_dat=%3Cgale_proqu%3EA498129593%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891501389&rft_id=info:pmid/&rft_galeid=A498129593&rfr_iscdi=true |