Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom

The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2017-04, Vol.59 (12), p.2034-2040
Hauptverfasser: Shamanaev, V. S., Potekaev, A. I., Lisenko, A. A., Krekov, M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2040
container_issue 12
container_start_page 2034
container_title Russian physics journal
container_volume 59
creator Shamanaev, V. S.
Potekaev, A. I.
Lisenko, A. A.
Krekov, M. G.
description The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude.
doi_str_mv 10.1007/s11182-017-1011-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1891501389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498129593</galeid><sourcerecordid>A498129593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-be018057b8782ea2fbc16f780c14ead63ee8cd41bd4cf8d9f1d6769d8615db2b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89bMfiV7rKVVoVCweg7ZZFK3bDc1SQ_-e1PWgxeZwwzD-wzDQ8g9sBkwxh8DAIg8Y8AzYAAZuyATqHiRNXkuLtPM6jITQvBrchPCnrFE1XxCVtuoYhdip1VPl6kfVMRAnaXrzihPt91uUH2gb2h71BENtd4daPxEutGoBvrkYnSHW3JlUwzvfvuUfKyW74uXbL15fl3M15kuqipmLTIQrOKt4CJHldtWQ225YBpKVKYuEIU2JbSm1FaYxoKped0YUUNl2rwtpuRhvHv07uuEIcq9O_nzhxJEAxWDQjQpNRtTO9Wj7Abrolc6lcFDp92Atkv7edkIyJuqKRIAI6C9C8GjlUefTPhvCUye_crRr0x-5dmvZInJRyak7LBD_-eVf6Efnbt8jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891501389</pqid></control><display><type>article</type><title>Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shamanaev, V. S. ; Potekaev, A. I. ; Lisenko, A. A. ; Krekov, M. G.</creator><creatorcontrib>Shamanaev, V. S. ; Potekaev, A. I. ; Lisenko, A. A. ; Krekov, M. G.</creatorcontrib><description>The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-017-1011-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Condensed Matter Physics ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Monte Carlo methods ; Nuclear Physics ; Ocean bottom ; Optical Devices ; Optical radar ; Optical thickness ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Remote sensing ; Theoretical</subject><ispartof>Russian physics journal, 2017-04, Vol.59 (12), p.2034-2040</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-be018057b8782ea2fbc16f780c14ead63ee8cd41bd4cf8d9f1d6769d8615db2b3</citedby><cites>FETCH-LOGICAL-c355t-be018057b8782ea2fbc16f780c14ead63ee8cd41bd4cf8d9f1d6769d8615db2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-017-1011-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-017-1011-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shamanaev, V. S.</creatorcontrib><creatorcontrib>Potekaev, A. I.</creatorcontrib><creatorcontrib>Lisenko, A. A.</creatorcontrib><creatorcontrib>Krekov, M. G.</creatorcontrib><title>Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude.</description><subject>Condensed Matter Physics</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Monte Carlo methods</subject><subject>Nuclear Physics</subject><subject>Ocean bottom</subject><subject>Optical Devices</subject><subject>Optical radar</subject><subject>Optical thickness</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Remote sensing</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89bMfiV7rKVVoVCweg7ZZFK3bDc1SQ_-e1PWgxeZwwzD-wzDQ8g9sBkwxh8DAIg8Y8AzYAAZuyATqHiRNXkuLtPM6jITQvBrchPCnrFE1XxCVtuoYhdip1VPl6kfVMRAnaXrzihPt91uUH2gb2h71BENtd4daPxEutGoBvrkYnSHW3JlUwzvfvuUfKyW74uXbL15fl3M15kuqipmLTIQrOKt4CJHldtWQ225YBpKVKYuEIU2JbSm1FaYxoKped0YUUNl2rwtpuRhvHv07uuEIcq9O_nzhxJEAxWDQjQpNRtTO9Wj7Abrolc6lcFDp92Atkv7edkIyJuqKRIAI6C9C8GjlUefTPhvCUye_crRr0x-5dmvZInJRyak7LBD_-eVf6Efnbt8jA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Shamanaev, V. S.</creator><creator>Potekaev, A. I.</creator><creator>Lisenko, A. A.</creator><creator>Krekov, M. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom</title><author>Shamanaev, V. S. ; Potekaev, A. I. ; Lisenko, A. A. ; Krekov, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-be018057b8782ea2fbc16f780c14ead63ee8cd41bd4cf8d9f1d6769d8615db2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed Matter Physics</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Monte Carlo methods</topic><topic>Nuclear Physics</topic><topic>Ocean bottom</topic><topic>Optical Devices</topic><topic>Optical radar</topic><topic>Optical thickness</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Remote sensing</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamanaev, V. S.</creatorcontrib><creatorcontrib>Potekaev, A. I.</creatorcontrib><creatorcontrib>Lisenko, A. A.</creatorcontrib><creatorcontrib>Krekov, M. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamanaev, V. S.</au><au>Potekaev, A. I.</au><au>Lisenko, A. A.</au><au>Krekov, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>59</volume><issue>12</issue><spage>2034</spage><epage>2040</epage><pages>2034-2040</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-017-1011-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2017-04, Vol.59 (12), p.2034-2040
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_1891501389
source SpringerLink Journals - AutoHoldings
subjects Condensed Matter Physics
Hadrons
Heavy Ions
Lasers
Mathematical and Computational Physics
Monte Carlo methods
Nuclear Physics
Ocean bottom
Optical Devices
Optical radar
Optical thickness
Optics
Photonics
Physics
Physics and Astronomy
Remote sensing
Theoretical
title Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Estimates%20of%20Lidar%20Signals%20Reflected%20from%20the%20Ocean%20Bottom&rft.jtitle=Russian%20physics%20journal&rft.au=Shamanaev,%20V.%20S.&rft.date=2017-04-01&rft.volume=59&rft.issue=12&rft.spage=2034&rft.epage=2040&rft.pages=2034-2040&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-017-1011-0&rft_dat=%3Cgale_proqu%3EA498129593%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891501389&rft_id=info:pmid/&rft_galeid=A498129593&rfr_iscdi=true