Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment

Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-01, Vol.465-466, p.1149-1154
Hauptverfasser: Masood, Ibrahim, Johari, Mohd Faizal, Rejab, Noor Azlina, Roshidi, Nur Rashida, Abidin, Nadia Zulikha Zainal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1154
container_issue
container_start_page 1149
container_title Applied Mechanics and Materials
container_volume 465-466
creator Masood, Ibrahim
Johari, Mohd Faizal
Rejab, Noor Azlina
Roshidi, Nur Rashida
Abidin, Nadia Zulikha Zainal
description Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly designed empirically. In this research, full factorial design of experiment was utilized for investigating the effect of four design parameters, i.e., recognition window size, training data amount, training data quality and hidden neuron amount. The pattern recognition study focuses on bivariate correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shifts, μ = ± 0.75 ~ 3.00 standard deviations. Raw data was used as input representation for a generalized model ANN classifier. The findings suggested that: (i) the best performance for each pattern could be achieved by setting different design parameters through specific classifiers, which (ii) gave superior result (average RP = 98.85%) compared to an empirical design (average RP = 96.5%). This research has provided a new perspective in designing ANN pattern recognition scheme in the field of statistical process control.
doi_str_mv 10.4028/www.scientific.net/AMM.465-466.1149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1891164503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891164503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-15f823800d1a9af75dd2f09bb452040d8abfa872e9b5566b26a2dbf3825fdb6d3</originalsourceid><addsrcrecordid>eNqVkFtLAzEQhYMX8Nb_EPBRds19s4-ltip4Q-1zyO4mNVqzNUmp_nvTVtBXH4YzMDPnDB8AZxiVDBF5vlqtytg645Ozri29SefD29uSCV4wIUqMWb0DDrEQpKiYJLtgUFeSIlpJXlNa721mqMi9OABHMb4iJBhm8hDoCxPdzMPeQu3hMGwCnJ7DO7MMG0mrPrzBB52SCR4-mrafeZdc7-FT-2LeDZxG52dwspzP4US3qQ_r8_HnwgT3nj8-AftWz6MZ_OgxmE7Gz6Or4ub-8no0vClaingqMLeSUIlQh3WtbcW7jlhUNw3jBDHUSd1YLSti6oZzIRoiNOkaSyXhtmtER4_B6dZ3EfqPpYlJvfbL4HOkwrLGWDCOaN4abbfa0McYjFWL_KYOXwojtWatMmv1y1pl1iqzVpl1LqHWrLPLeOuSgvYxmfblT9g_fL4BT-2Qvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891164503</pqid></control><display><type>article</type><title>Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment</title><source>Scientific.net Journals</source><creator>Masood, Ibrahim ; Johari, Mohd Faizal ; Rejab, Noor Azlina ; Roshidi, Nur Rashida ; Abidin, Nadia Zulikha Zainal</creator><creatorcontrib>Masood, Ibrahim ; Johari, Mohd Faizal ; Rejab, Noor Azlina ; Roshidi, Nur Rashida ; Abidin, Nadia Zulikha Zainal</creatorcontrib><description>Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly designed empirically. In this research, full factorial design of experiment was utilized for investigating the effect of four design parameters, i.e., recognition window size, training data amount, training data quality and hidden neuron amount. The pattern recognition study focuses on bivariate correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shifts, μ = ± 0.75 ~ 3.00 standard deviations. Raw data was used as input representation for a generalized model ANN classifier. The findings suggested that: (i) the best performance for each pattern could be achieved by setting different design parameters through specific classifiers, which (ii) gave superior result (average RP = 98.85%) compared to an empirical design (average RP = 96.5%). This research has provided a new perspective in designing ANN pattern recognition scheme in the field of statistical process control.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859339</identifier><identifier>ISBN: 3037859334</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.465-466.1149</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Artificial neural networks ; Bivariate analysis ; Classifiers ; Correlation analysis ; Cross correlation ; Design parameters ; Factorial design ; Mathematical models ; Mean ; Pattern recognition ; Process controls ; Quality control ; Statistical process control ; Training</subject><ispartof>Applied Mechanics and Materials, 2014-01, Vol.465-466, p.1149-1154</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-15f823800d1a9af75dd2f09bb452040d8abfa872e9b5566b26a2dbf3825fdb6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2851?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Masood, Ibrahim</creatorcontrib><creatorcontrib>Johari, Mohd Faizal</creatorcontrib><creatorcontrib>Rejab, Noor Azlina</creatorcontrib><creatorcontrib>Roshidi, Nur Rashida</creatorcontrib><creatorcontrib>Abidin, Nadia Zulikha Zainal</creatorcontrib><title>Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment</title><title>Applied Mechanics and Materials</title><description>Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly designed empirically. In this research, full factorial design of experiment was utilized for investigating the effect of four design parameters, i.e., recognition window size, training data amount, training data quality and hidden neuron amount. The pattern recognition study focuses on bivariate correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shifts, μ = ± 0.75 ~ 3.00 standard deviations. Raw data was used as input representation for a generalized model ANN classifier. The findings suggested that: (i) the best performance for each pattern could be achieved by setting different design parameters through specific classifiers, which (ii) gave superior result (average RP = 98.85%) compared to an empirical design (average RP = 96.5%). This research has provided a new perspective in designing ANN pattern recognition scheme in the field of statistical process control.</description><subject>Artificial neural networks</subject><subject>Bivariate analysis</subject><subject>Classifiers</subject><subject>Correlation analysis</subject><subject>Cross correlation</subject><subject>Design parameters</subject><subject>Factorial design</subject><subject>Mathematical models</subject><subject>Mean</subject><subject>Pattern recognition</subject><subject>Process controls</subject><subject>Quality control</subject><subject>Statistical process control</subject><subject>Training</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859339</isbn><isbn>3037859334</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkFtLAzEQhYMX8Nb_EPBRds19s4-ltip4Q-1zyO4mNVqzNUmp_nvTVtBXH4YzMDPnDB8AZxiVDBF5vlqtytg645Ozri29SefD29uSCV4wIUqMWb0DDrEQpKiYJLtgUFeSIlpJXlNa721mqMi9OABHMb4iJBhm8hDoCxPdzMPeQu3hMGwCnJ7DO7MMG0mrPrzBB52SCR4-mrafeZdc7-FT-2LeDZxG52dwspzP4US3qQ_r8_HnwgT3nj8-AftWz6MZ_OgxmE7Gz6Or4ub-8no0vClaingqMLeSUIlQh3WtbcW7jlhUNw3jBDHUSd1YLSti6oZzIRoiNOkaSyXhtmtER4_B6dZ3EfqPpYlJvfbL4HOkwrLGWDCOaN4abbfa0McYjFWL_KYOXwojtWatMmv1y1pl1iqzVpl1LqHWrLPLeOuSgvYxmfblT9g_fL4BT-2Qvw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Masood, Ibrahim</creator><creator>Johari, Mohd Faizal</creator><creator>Rejab, Noor Azlina</creator><creator>Roshidi, Nur Rashida</creator><creator>Abidin, Nadia Zulikha Zainal</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment</title><author>Masood, Ibrahim ; Johari, Mohd Faizal ; Rejab, Noor Azlina ; Roshidi, Nur Rashida ; Abidin, Nadia Zulikha Zainal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-15f823800d1a9af75dd2f09bb452040d8abfa872e9b5566b26a2dbf3825fdb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>Bivariate analysis</topic><topic>Classifiers</topic><topic>Correlation analysis</topic><topic>Cross correlation</topic><topic>Design parameters</topic><topic>Factorial design</topic><topic>Mathematical models</topic><topic>Mean</topic><topic>Pattern recognition</topic><topic>Process controls</topic><topic>Quality control</topic><topic>Statistical process control</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masood, Ibrahim</creatorcontrib><creatorcontrib>Johari, Mohd Faizal</creatorcontrib><creatorcontrib>Rejab, Noor Azlina</creatorcontrib><creatorcontrib>Roshidi, Nur Rashida</creatorcontrib><creatorcontrib>Abidin, Nadia Zulikha Zainal</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masood, Ibrahim</au><au>Johari, Mohd Faizal</au><au>Rejab, Noor Azlina</au><au>Roshidi, Nur Rashida</au><au>Abidin, Nadia Zulikha Zainal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>465-466</volume><spage>1149</spage><epage>1154</epage><pages>1149-1154</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859339</isbn><isbn>3037859334</isbn><abstract>Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly designed empirically. In this research, full factorial design of experiment was utilized for investigating the effect of four design parameters, i.e., recognition window size, training data amount, training data quality and hidden neuron amount. The pattern recognition study focuses on bivariate correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shifts, μ = ± 0.75 ~ 3.00 standard deviations. Raw data was used as input representation for a generalized model ANN classifier. The findings suggested that: (i) the best performance for each pattern could be achieved by setting different design parameters through specific classifiers, which (ii) gave superior result (average RP = 98.85%) compared to an empirical design (average RP = 96.5%). This research has provided a new perspective in designing ANN pattern recognition scheme in the field of statistical process control.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.465-466.1149</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-01, Vol.465-466, p.1149-1154
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1891164503
source Scientific.net Journals
subjects Artificial neural networks
Bivariate analysis
Classifiers
Correlation analysis
Cross correlation
Design parameters
Factorial design
Mathematical models
Mean
Pattern recognition
Process controls
Quality control
Statistical process control
Training
title Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20Artificial%20Neural%20Network%20Pattern%20Recognition%20Scheme%20Using%20Full%20Factorial%20Experiment&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Masood,%20Ibrahim&rft.date=2014-01-01&rft.volume=465-466&rft.spage=1149&rft.epage=1154&rft.pages=1149-1154&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859339&rft.isbn_list=3037859334&rft_id=info:doi/10.4028/www.scientific.net/AMM.465-466.1149&rft_dat=%3Cproquest_cross%3E1891164503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891164503&rft_id=info:pmid/&rfr_iscdi=true