Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment
Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-01, Vol.465-466, p.1149-1154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1154 |
---|---|
container_issue | |
container_start_page | 1149 |
container_title | Applied Mechanics and Materials |
container_volume | 465-466 |
creator | Masood, Ibrahim Johari, Mohd Faizal Rejab, Noor Azlina Roshidi, Nur Rashida Abidin, Nadia Zulikha Zainal |
description | Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly designed empirically. In this research, full factorial design of experiment was utilized for investigating the effect of four design parameters, i.e., recognition window size, training data amount, training data quality and hidden neuron amount. The pattern recognition study focuses on bivariate correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shifts, μ = ± 0.75 ~ 3.00 standard deviations. Raw data was used as input representation for a generalized model ANN classifier. The findings suggested that: (i) the best performance for each pattern could be achieved by setting different design parameters through specific classifiers, which (ii) gave superior result (average RP = 98.85%) compared to an empirical design (average RP = 96.5%). This research has provided a new perspective in designing ANN pattern recognition scheme in the field of statistical process control. |
doi_str_mv | 10.4028/www.scientific.net/AMM.465-466.1149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1891164503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891164503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-15f823800d1a9af75dd2f09bb452040d8abfa872e9b5566b26a2dbf3825fdb6d3</originalsourceid><addsrcrecordid>eNqVkFtLAzEQhYMX8Nb_EPBRds19s4-ltip4Q-1zyO4mNVqzNUmp_nvTVtBXH4YzMDPnDB8AZxiVDBF5vlqtytg645Ozri29SefD29uSCV4wIUqMWb0DDrEQpKiYJLtgUFeSIlpJXlNa721mqMi9OABHMb4iJBhm8hDoCxPdzMPeQu3hMGwCnJ7DO7MMG0mrPrzBB52SCR4-mrafeZdc7-FT-2LeDZxG52dwspzP4US3qQ_r8_HnwgT3nj8-AftWz6MZ_OgxmE7Gz6Or4ub-8no0vClaingqMLeSUIlQh3WtbcW7jlhUNw3jBDHUSd1YLSti6oZzIRoiNOkaSyXhtmtER4_B6dZ3EfqPpYlJvfbL4HOkwrLGWDCOaN4abbfa0McYjFWL_KYOXwojtWatMmv1y1pl1iqzVpl1LqHWrLPLeOuSgvYxmfblT9g_fL4BT-2Qvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891164503</pqid></control><display><type>article</type><title>Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment</title><source>Scientific.net Journals</source><creator>Masood, Ibrahim ; Johari, Mohd Faizal ; Rejab, Noor Azlina ; Roshidi, Nur Rashida ; Abidin, Nadia Zulikha Zainal</creator><creatorcontrib>Masood, Ibrahim ; Johari, Mohd Faizal ; Rejab, Noor Azlina ; Roshidi, Nur Rashida ; Abidin, Nadia Zulikha Zainal</creatorcontrib><description>Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly designed empirically. In this research, full factorial design of experiment was utilized for investigating the effect of four design parameters, i.e., recognition window size, training data amount, training data quality and hidden neuron amount. The pattern recognition study focuses on bivariate correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shifts, μ = ± 0.75 ~ 3.00 standard deviations. Raw data was used as input representation for a generalized model ANN classifier. The findings suggested that: (i) the best performance for each pattern could be achieved by setting different design parameters through specific classifiers, which (ii) gave superior result (average RP = 98.85%) compared to an empirical design (average RP = 96.5%). This research has provided a new perspective in designing ANN pattern recognition scheme in the field of statistical process control.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859339</identifier><identifier>ISBN: 3037859334</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.465-466.1149</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Artificial neural networks ; Bivariate analysis ; Classifiers ; Correlation analysis ; Cross correlation ; Design parameters ; Factorial design ; Mathematical models ; Mean ; Pattern recognition ; Process controls ; Quality control ; Statistical process control ; Training</subject><ispartof>Applied Mechanics and Materials, 2014-01, Vol.465-466, p.1149-1154</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-15f823800d1a9af75dd2f09bb452040d8abfa872e9b5566b26a2dbf3825fdb6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2851?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Masood, Ibrahim</creatorcontrib><creatorcontrib>Johari, Mohd Faizal</creatorcontrib><creatorcontrib>Rejab, Noor Azlina</creatorcontrib><creatorcontrib>Roshidi, Nur Rashida</creatorcontrib><creatorcontrib>Abidin, Nadia Zulikha Zainal</creatorcontrib><title>Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment</title><title>Applied Mechanics and Materials</title><description>Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly designed empirically. In this research, full factorial design of experiment was utilized for investigating the effect of four design parameters, i.e., recognition window size, training data amount, training data quality and hidden neuron amount. The pattern recognition study focuses on bivariate correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shifts, μ = ± 0.75 ~ 3.00 standard deviations. Raw data was used as input representation for a generalized model ANN classifier. The findings suggested that: (i) the best performance for each pattern could be achieved by setting different design parameters through specific classifiers, which (ii) gave superior result (average RP = 98.85%) compared to an empirical design (average RP = 96.5%). This research has provided a new perspective in designing ANN pattern recognition scheme in the field of statistical process control.</description><subject>Artificial neural networks</subject><subject>Bivariate analysis</subject><subject>Classifiers</subject><subject>Correlation analysis</subject><subject>Cross correlation</subject><subject>Design parameters</subject><subject>Factorial design</subject><subject>Mathematical models</subject><subject>Mean</subject><subject>Pattern recognition</subject><subject>Process controls</subject><subject>Quality control</subject><subject>Statistical process control</subject><subject>Training</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859339</isbn><isbn>3037859334</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkFtLAzEQhYMX8Nb_EPBRds19s4-ltip4Q-1zyO4mNVqzNUmp_nvTVtBXH4YzMDPnDB8AZxiVDBF5vlqtytg645Ozri29SefD29uSCV4wIUqMWb0DDrEQpKiYJLtgUFeSIlpJXlNa721mqMi9OABHMb4iJBhm8hDoCxPdzMPeQu3hMGwCnJ7DO7MMG0mrPrzBB52SCR4-mrafeZdc7-FT-2LeDZxG52dwspzP4US3qQ_r8_HnwgT3nj8-AftWz6MZ_OgxmE7Gz6Or4ub-8no0vClaingqMLeSUIlQh3WtbcW7jlhUNw3jBDHUSd1YLSti6oZzIRoiNOkaSyXhtmtER4_B6dZ3EfqPpYlJvfbL4HOkwrLGWDCOaN4abbfa0McYjFWL_KYOXwojtWatMmv1y1pl1iqzVpl1LqHWrLPLeOuSgvYxmfblT9g_fL4BT-2Qvw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Masood, Ibrahim</creator><creator>Johari, Mohd Faizal</creator><creator>Rejab, Noor Azlina</creator><creator>Roshidi, Nur Rashida</creator><creator>Abidin, Nadia Zulikha Zainal</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment</title><author>Masood, Ibrahim ; Johari, Mohd Faizal ; Rejab, Noor Azlina ; Roshidi, Nur Rashida ; Abidin, Nadia Zulikha Zainal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-15f823800d1a9af75dd2f09bb452040d8abfa872e9b5566b26a2dbf3825fdb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>Bivariate analysis</topic><topic>Classifiers</topic><topic>Correlation analysis</topic><topic>Cross correlation</topic><topic>Design parameters</topic><topic>Factorial design</topic><topic>Mathematical models</topic><topic>Mean</topic><topic>Pattern recognition</topic><topic>Process controls</topic><topic>Quality control</topic><topic>Statistical process control</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masood, Ibrahim</creatorcontrib><creatorcontrib>Johari, Mohd Faizal</creatorcontrib><creatorcontrib>Rejab, Noor Azlina</creatorcontrib><creatorcontrib>Roshidi, Nur Rashida</creatorcontrib><creatorcontrib>Abidin, Nadia Zulikha Zainal</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masood, Ibrahim</au><au>Johari, Mohd Faizal</au><au>Rejab, Noor Azlina</au><au>Roshidi, Nur Rashida</au><au>Abidin, Nadia Zulikha Zainal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>465-466</volume><spage>1149</spage><epage>1154</epage><pages>1149-1154</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859339</isbn><isbn>3037859334</isbn><abstract>Automated recognition of process variation patterns using an artificial neural network (ANN) model classifier is a useful technique for multivariate quality control. Proper design of the classifier is critical for achieving effective recognition performance (RP). The existing classifiers were mainly designed empirically. In this research, full factorial design of experiment was utilized for investigating the effect of four design parameters, i.e., recognition window size, training data amount, training data quality and hidden neuron amount. The pattern recognition study focuses on bivariate correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shifts, μ = ± 0.75 ~ 3.00 standard deviations. Raw data was used as input representation for a generalized model ANN classifier. The findings suggested that: (i) the best performance for each pattern could be achieved by setting different design parameters through specific classifiers, which (ii) gave superior result (average RP = 98.85%) compared to an empirical design (average RP = 96.5%). This research has provided a new perspective in designing ANN pattern recognition scheme in the field of statistical process control.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.465-466.1149</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-01, Vol.465-466, p.1149-1154 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1891164503 |
source | Scientific.net Journals |
subjects | Artificial neural networks Bivariate analysis Classifiers Correlation analysis Cross correlation Design parameters Factorial design Mathematical models Mean Pattern recognition Process controls Quality control Statistical process control Training |
title | Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20Artificial%20Neural%20Network%20Pattern%20Recognition%20Scheme%20Using%20Full%20Factorial%20Experiment&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Masood,%20Ibrahim&rft.date=2014-01-01&rft.volume=465-466&rft.spage=1149&rft.epage=1154&rft.pages=1149-1154&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859339&rft.isbn_list=3037859334&rft_id=info:doi/10.4028/www.scientific.net/AMM.465-466.1149&rft_dat=%3Cproquest_cross%3E1891164503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891164503&rft_id=info:pmid/&rfr_iscdi=true |