Potassium Bromide as Space Holder for Titanium Foam Preparation
Titanium (Ti) alloy foam was prepared by using potassium bromide (KBr) as space holder with percentage between 20 to 40 wt.%. In this work, the potential of KBr as a new space holder was determined. The Ti alloy powder and space holder were first manually mixed before being compacted using hydraulic...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-01, Vol.465-466, p.922-926 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 926 |
---|---|
container_issue | |
container_start_page | 922 |
container_title | Applied Mechanics and Materials |
container_volume | 465-466 |
creator | Ahmad, Sufizar Zain, M.I.M. Hussin, R. Ismail, A. Taib, H. Jamaludin, K.R. Mat Noor, Fazimah Kamdi, Z. |
description | Titanium (Ti) alloy foam was prepared by using potassium bromide (KBr) as space holder with percentage between 20 to 40 wt.%. In this work, the potential of KBr as a new space holder was determined. The Ti alloy powder and space holder were first manually mixed before being compacted using hydraulic hand press. The green compacts were then sintered at temperature of 1160°C, 1200°C and 1240°C in a tube furnace. The microstructure of the Ti alloy foams were observed by Scanning Electron Microscope (SEM). It was revealed that the porosity content in the Ti foam was in the range of 16% to 31% and density in the range of 1.5 g/cm3 to 2.6 g/cm3. Moreover, the pore size of the titanium alloy foam is in the range of 187μm to 303μm. Although the sintering temperatures were found incapable of promoting overall densification to the Ti alloy foam, 1200°C was denoted to be the maximal temperature for promoting maximal porosity to the Ti alloy foam. Nonetheless, KBr was proven to be suitable as space holder for Ti foam preparation as referred to its stability and insolubility in the Ti alloy. |
doi_str_mv | 10.4028/www.scientific.net/AMM.465-466.922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1891164211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891164211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4f94dab379e45b2ddbd88544e2129d42378b6065c5a8168b678c4e6ccb7e8dca3</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYN_wDn3HQq-Ce2SNE2TJ9mmc8KGA-dzSJMUO9amJhnDb2_mBH304XIP3MM5lx8AdwhmBGI2PhwOmVeN6UJTNyrrTBhPVquM0CIllGYc4zMwQJTitCQMn4MRL1kO85IVPM_5xfcNplHTK3Dt_RZCShBhA3C_tkF63-zbZOps22iTSJ-89lKZZGF32rikti7ZNEF2R9PcyjZZO9NLJ0NjuxtwWcudN6OfPQRv88fNbJEuX56eZ5NlqnLKQkpqTrSs8pIbUlRY60ozVhBiMMJcExw_rSikhSokQzTqkiliqFJVaZhWMh-C21Nu7-zH3vggtnbvulgpEOMIUYIRiq7pyaWc9d6ZWvSuaaX7FAiKI0gRQYpfkCKCFBGkiCDjUBFBxpCHU0hwsvPBqPc_Xf-P-QIJLYNu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891164211</pqid></control><display><type>article</type><title>Potassium Bromide as Space Holder for Titanium Foam Preparation</title><source>Scientific.net Journals</source><creator>Ahmad, Sufizar ; Zain, M.I.M. ; Hussin, R. ; Ismail, A. ; Taib, H. ; Jamaludin, K.R. ; Mat Noor, Fazimah ; Kamdi, Z.</creator><creatorcontrib>Ahmad, Sufizar ; Zain, M.I.M. ; Hussin, R. ; Ismail, A. ; Taib, H. ; Jamaludin, K.R. ; Mat Noor, Fazimah ; Kamdi, Z.</creatorcontrib><description>Titanium (Ti) alloy foam was prepared by using potassium bromide (KBr) as space holder with percentage between 20 to 40 wt.%. In this work, the potential of KBr as a new space holder was determined. The Ti alloy powder and space holder were first manually mixed before being compacted using hydraulic hand press. The green compacts were then sintered at temperature of 1160°C, 1200°C and 1240°C in a tube furnace. The microstructure of the Ti alloy foams were observed by Scanning Electron Microscope (SEM). It was revealed that the porosity content in the Ti foam was in the range of 16% to 31% and density in the range of 1.5 g/cm3 to 2.6 g/cm3. Moreover, the pore size of the titanium alloy foam is in the range of 187μm to 303μm. Although the sintering temperatures were found incapable of promoting overall densification to the Ti alloy foam, 1200°C was denoted to be the maximal temperature for promoting maximal porosity to the Ti alloy foam. Nonetheless, KBr was proven to be suitable as space holder for Ti foam preparation as referred to its stability and insolubility in the Ti alloy.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859339</identifier><identifier>ISBN: 3037859334</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.465-466.922</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Alloy powders ; Compacts ; Densification ; Electron microscopes ; Foamed metals ; Pore size ; Porosity ; Potassium ; Potassium bromides ; Sintering (powder metallurgy) ; Titanium alloys ; Titanium base alloys ; Tube furnaces</subject><ispartof>Applied Mechanics and Materials, 2014-01, Vol.465-466, p.922-926</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4f94dab379e45b2ddbd88544e2129d42378b6065c5a8168b678c4e6ccb7e8dca3</citedby><cites>FETCH-LOGICAL-c368t-4f94dab379e45b2ddbd88544e2129d42378b6065c5a8168b678c4e6ccb7e8dca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2851?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ahmad, Sufizar</creatorcontrib><creatorcontrib>Zain, M.I.M.</creatorcontrib><creatorcontrib>Hussin, R.</creatorcontrib><creatorcontrib>Ismail, A.</creatorcontrib><creatorcontrib>Taib, H.</creatorcontrib><creatorcontrib>Jamaludin, K.R.</creatorcontrib><creatorcontrib>Mat Noor, Fazimah</creatorcontrib><creatorcontrib>Kamdi, Z.</creatorcontrib><title>Potassium Bromide as Space Holder for Titanium Foam Preparation</title><title>Applied Mechanics and Materials</title><description>Titanium (Ti) alloy foam was prepared by using potassium bromide (KBr) as space holder with percentage between 20 to 40 wt.%. In this work, the potential of KBr as a new space holder was determined. The Ti alloy powder and space holder were first manually mixed before being compacted using hydraulic hand press. The green compacts were then sintered at temperature of 1160°C, 1200°C and 1240°C in a tube furnace. The microstructure of the Ti alloy foams were observed by Scanning Electron Microscope (SEM). It was revealed that the porosity content in the Ti foam was in the range of 16% to 31% and density in the range of 1.5 g/cm3 to 2.6 g/cm3. Moreover, the pore size of the titanium alloy foam is in the range of 187μm to 303μm. Although the sintering temperatures were found incapable of promoting overall densification to the Ti alloy foam, 1200°C was denoted to be the maximal temperature for promoting maximal porosity to the Ti alloy foam. Nonetheless, KBr was proven to be suitable as space holder for Ti foam preparation as referred to its stability and insolubility in the Ti alloy.</description><subject>Alloy powders</subject><subject>Compacts</subject><subject>Densification</subject><subject>Electron microscopes</subject><subject>Foamed metals</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Potassium</subject><subject>Potassium bromides</subject><subject>Sintering (powder metallurgy)</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Tube furnaces</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859339</isbn><isbn>3037859334</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkF9LwzAUxYN_wDn3HQq-Ce2SNE2TJ9mmc8KGA-dzSJMUO9amJhnDb2_mBH304XIP3MM5lx8AdwhmBGI2PhwOmVeN6UJTNyrrTBhPVquM0CIllGYc4zMwQJTitCQMn4MRL1kO85IVPM_5xfcNplHTK3Dt_RZCShBhA3C_tkF63-zbZOps22iTSJ-89lKZZGF32rikti7ZNEF2R9PcyjZZO9NLJ0NjuxtwWcudN6OfPQRv88fNbJEuX56eZ5NlqnLKQkpqTrSs8pIbUlRY60ozVhBiMMJcExw_rSikhSokQzTqkiliqFJVaZhWMh-C21Nu7-zH3vggtnbvulgpEOMIUYIRiq7pyaWc9d6ZWvSuaaX7FAiKI0gRQYpfkCKCFBGkiCDjUBFBxpCHU0hwsvPBqPc_Xf-P-QIJLYNu</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Ahmad, Sufizar</creator><creator>Zain, M.I.M.</creator><creator>Hussin, R.</creator><creator>Ismail, A.</creator><creator>Taib, H.</creator><creator>Jamaludin, K.R.</creator><creator>Mat Noor, Fazimah</creator><creator>Kamdi, Z.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Potassium Bromide as Space Holder for Titanium Foam Preparation</title><author>Ahmad, Sufizar ; Zain, M.I.M. ; Hussin, R. ; Ismail, A. ; Taib, H. ; Jamaludin, K.R. ; Mat Noor, Fazimah ; Kamdi, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4f94dab379e45b2ddbd88544e2129d42378b6065c5a8168b678c4e6ccb7e8dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloy powders</topic><topic>Compacts</topic><topic>Densification</topic><topic>Electron microscopes</topic><topic>Foamed metals</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Potassium</topic><topic>Potassium bromides</topic><topic>Sintering (powder metallurgy)</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Tube furnaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Sufizar</creatorcontrib><creatorcontrib>Zain, M.I.M.</creatorcontrib><creatorcontrib>Hussin, R.</creatorcontrib><creatorcontrib>Ismail, A.</creatorcontrib><creatorcontrib>Taib, H.</creatorcontrib><creatorcontrib>Jamaludin, K.R.</creatorcontrib><creatorcontrib>Mat Noor, Fazimah</creatorcontrib><creatorcontrib>Kamdi, Z.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Sufizar</au><au>Zain, M.I.M.</au><au>Hussin, R.</au><au>Ismail, A.</au><au>Taib, H.</au><au>Jamaludin, K.R.</au><au>Mat Noor, Fazimah</au><au>Kamdi, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potassium Bromide as Space Holder for Titanium Foam Preparation</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>465-466</volume><spage>922</spage><epage>926</epage><pages>922-926</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859339</isbn><isbn>3037859334</isbn><abstract>Titanium (Ti) alloy foam was prepared by using potassium bromide (KBr) as space holder with percentage between 20 to 40 wt.%. In this work, the potential of KBr as a new space holder was determined. The Ti alloy powder and space holder were first manually mixed before being compacted using hydraulic hand press. The green compacts were then sintered at temperature of 1160°C, 1200°C and 1240°C in a tube furnace. The microstructure of the Ti alloy foams were observed by Scanning Electron Microscope (SEM). It was revealed that the porosity content in the Ti foam was in the range of 16% to 31% and density in the range of 1.5 g/cm3 to 2.6 g/cm3. Moreover, the pore size of the titanium alloy foam is in the range of 187μm to 303μm. Although the sintering temperatures were found incapable of promoting overall densification to the Ti alloy foam, 1200°C was denoted to be the maximal temperature for promoting maximal porosity to the Ti alloy foam. Nonetheless, KBr was proven to be suitable as space holder for Ti foam preparation as referred to its stability and insolubility in the Ti alloy.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.465-466.922</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-01, Vol.465-466, p.922-926 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1891164211 |
source | Scientific.net Journals |
subjects | Alloy powders Compacts Densification Electron microscopes Foamed metals Pore size Porosity Potassium Potassium bromides Sintering (powder metallurgy) Titanium alloys Titanium base alloys Tube furnaces |
title | Potassium Bromide as Space Holder for Titanium Foam Preparation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potassium%20Bromide%20as%20Space%20Holder%20for%20Titanium%20Foam%20Preparation&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Ahmad,%20Sufizar&rft.date=2014-01-01&rft.volume=465-466&rft.spage=922&rft.epage=926&rft.pages=922-926&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859339&rft.isbn_list=3037859334&rft_id=info:doi/10.4028/www.scientific.net/AMM.465-466.922&rft_dat=%3Cproquest_cross%3E1891164211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891164211&rft_id=info:pmid/&rfr_iscdi=true |