Spherically Punctured Reed-Muller Codes

Consider a binary Reed-Muller code RM(r, m) defined on the m-dimensional hypercube F 2 m . In this paper, we study punctured Reed-Muller codes P r (m, b), whose positions are restricted to the m-tuples of a given Hamming weight b. In combinatorial terms, this paper concerns m-variate Boolean polynom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-05, Vol.63 (5), p.2773-2780
Hauptverfasser: Dumer, Ilya, Kapralova, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a binary Reed-Muller code RM(r, m) defined on the m-dimensional hypercube F 2 m . In this paper, we study punctured Reed-Muller codes P r (m, b), whose positions are restricted to the m-tuples of a given Hamming weight b. In combinatorial terms, this paper concerns m-variate Boolean polynomials of any degree r, which are evaluated on a Hamming sphere of some radius b in F 2 m . Codes P r (m, b) inherit some recursive properties of RM codes. In particular, they can be built from the shorter codes, by decomposing a spherical b-layer into sub-layers of smaller dimensions. However, these sub-layers have different sizes and do not form the classical Plotkin construction. We analyze recursive properties of the spherically punctured codes P r (m, b) and find their distances for the arbitrary values of parameters r, m, and b. Finally, we describe recursive (successive cancellation) decoding of these codes.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2017.2673827