Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures

The structure and electronic properties of the WS 2 /SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2017, Vol.105 (2), p.114-118
Hauptverfasser: Luo, M., Xu, Y. E., Song, Y. X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 2
container_start_page 114
container_title JETP letters
container_volume 105
creator Luo, M.
Xu, Y. E.
Song, Y. X.
description The structure and electronic properties of the WS 2 /SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS 2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E -field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS 2 /SiC vdW heterostructures is very promising for its potential use in nanodevices.
doi_str_mv 10.1134/S0021364017020035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1890233215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1890233215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5bc0d12761da4e80800375533b429da03e700b0afa0019f1d92cff7e4fbaebf13</originalsourceid><addsrcrecordid>eNp1UMlOwzAQtRBIlMIHcLPEOTBjZz2iik0q4lA4R17GJVWaBDs59O9xVA5IiNM7vGXePMauEW4RZXq3ARAo8xSwAAEgsxO2QKggydOyOGWLmU5m_pxdhLADQCxlsWDmtbdTq8am73jvuFad5Vs1cH3gXe_3quVh9Krp-EyoCMPQNmQ5tWRG3xjuGmotj4JNs0q0CpH7pJF8H32TGSdP4ZKdOdUGuvrBJft4fHhfPSfrt6eX1f06MSIvxyTTBiyKIkerUiqhjG8UWSalTkVlFUgqADQop2L7yqGthHGuoNRpRdqhXLKbY-7g-6-Jwljv-sl38WSNZQVCSoFZVOFRZWLH4MnVg2_2yh9qhHresv6zZfSIoydEbbcl_yv5X9M3Gfp1lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1890233215</pqid></control><display><type>article</type><title>Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures</title><source>SpringerLink Journals</source><creator>Luo, M. ; Xu, Y. E. ; Song, Y. X.</creator><creatorcontrib>Luo, M. ; Xu, Y. E. ; Song, Y. X.</creatorcontrib><description>The structure and electronic properties of the WS 2 /SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS 2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E -field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS 2 /SiC vdW heterostructures is very promising for its potential use in nanodevices.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364017020035</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Compressive properties ; Condensed Matter ; Conduction bands ; Electric fields ; Electronic properties ; Energy gap ; Heterostructures ; Molecular ; Monolayers ; Nanotechnology devices ; Normal strain ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Solid State Physics ; Spintronics ; Valence band</subject><ispartof>JETP letters, 2017, Vol.105 (2), p.114-118</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5bc0d12761da4e80800375533b429da03e700b0afa0019f1d92cff7e4fbaebf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364017020035$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364017020035$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Luo, M.</creatorcontrib><creatorcontrib>Xu, Y. E.</creatorcontrib><creatorcontrib>Song, Y. X.</creatorcontrib><title>Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>The structure and electronic properties of the WS 2 /SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS 2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E -field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS 2 /SiC vdW heterostructures is very promising for its potential use in nanodevices.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Compressive properties</subject><subject>Condensed Matter</subject><subject>Conduction bands</subject><subject>Electric fields</subject><subject>Electronic properties</subject><subject>Energy gap</subject><subject>Heterostructures</subject><subject>Molecular</subject><subject>Monolayers</subject><subject>Nanotechnology devices</subject><subject>Normal strain</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Valence band</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQtRBIlMIHcLPEOTBjZz2iik0q4lA4R17GJVWaBDs59O9xVA5IiNM7vGXePMauEW4RZXq3ARAo8xSwAAEgsxO2QKggydOyOGWLmU5m_pxdhLADQCxlsWDmtbdTq8am73jvuFad5Vs1cH3gXe_3quVh9Krp-EyoCMPQNmQ5tWRG3xjuGmotj4JNs0q0CpH7pJF8H32TGSdP4ZKdOdUGuvrBJft4fHhfPSfrt6eX1f06MSIvxyTTBiyKIkerUiqhjG8UWSalTkVlFUgqADQop2L7yqGthHGuoNRpRdqhXLKbY-7g-6-Jwljv-sl38WSNZQVCSoFZVOFRZWLH4MnVg2_2yh9qhHresv6zZfSIoydEbbcl_yv5X9M3Gfp1lw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Luo, M.</creator><creator>Xu, Y. E.</creator><creator>Song, Y. X.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures</title><author>Luo, M. ; Xu, Y. E. ; Song, Y. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5bc0d12761da4e80800375533b429da03e700b0afa0019f1d92cff7e4fbaebf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Compressive properties</topic><topic>Condensed Matter</topic><topic>Conduction bands</topic><topic>Electric fields</topic><topic>Electronic properties</topic><topic>Energy gap</topic><topic>Heterostructures</topic><topic>Molecular</topic><topic>Monolayers</topic><topic>Nanotechnology devices</topic><topic>Normal strain</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, M.</creatorcontrib><creatorcontrib>Xu, Y. E.</creatorcontrib><creatorcontrib>Song, Y. X.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, M.</au><au>Xu, Y. E.</au><au>Song, Y. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2017</date><risdate>2017</risdate><volume>105</volume><issue>2</issue><spage>114</spage><epage>118</epage><pages>114-118</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>The structure and electronic properties of the WS 2 /SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS 2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E -field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS 2 /SiC vdW heterostructures is very promising for its potential use in nanodevices.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364017020035</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2017, Vol.105 (2), p.114-118
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_1890233215
source SpringerLink Journals
subjects Atomic
Biological and Medical Physics
Biophysics
Compressive properties
Condensed Matter
Conduction bands
Electric fields
Electronic properties
Energy gap
Heterostructures
Molecular
Monolayers
Nanotechnology devices
Normal strain
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum Information Technology
Solid State Physics
Spintronics
Valence band
title Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20band%20gap%20by%20normal%20strain%20and%20an%20applied%20electric%20field%20in%20SiC-based%20heterostructures&rft.jtitle=JETP%20letters&rft.au=Luo,%20M.&rft.date=2017&rft.volume=105&rft.issue=2&rft.spage=114&rft.epage=118&rft.pages=114-118&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364017020035&rft_dat=%3Cproquest_cross%3E1890233215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1890233215&rft_id=info:pmid/&rfr_iscdi=true