Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures
The structure and electronic properties of the WS 2 /SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the v...
Gespeichert in:
Veröffentlicht in: | JETP letters 2017, Vol.105 (2), p.114-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 2 |
container_start_page | 114 |
container_title | JETP letters |
container_volume | 105 |
creator | Luo, M. Xu, Y. E. Song, Y. X. |
description | The structure and electronic properties of the WS
2
/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS
2
to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the
E
-field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS
2
/SiC vdW heterostructures is very promising for its potential use in nanodevices. |
doi_str_mv | 10.1134/S0021364017020035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1890233215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1890233215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5bc0d12761da4e80800375533b429da03e700b0afa0019f1d92cff7e4fbaebf13</originalsourceid><addsrcrecordid>eNp1UMlOwzAQtRBIlMIHcLPEOTBjZz2iik0q4lA4R17GJVWaBDs59O9xVA5IiNM7vGXePMauEW4RZXq3ARAo8xSwAAEgsxO2QKggydOyOGWLmU5m_pxdhLADQCxlsWDmtbdTq8am73jvuFad5Vs1cH3gXe_3quVh9Krp-EyoCMPQNmQ5tWRG3xjuGmotj4JNs0q0CpH7pJF8H32TGSdP4ZKdOdUGuvrBJft4fHhfPSfrt6eX1f06MSIvxyTTBiyKIkerUiqhjG8UWSalTkVlFUgqADQop2L7yqGthHGuoNRpRdqhXLKbY-7g-6-Jwljv-sl38WSNZQVCSoFZVOFRZWLH4MnVg2_2yh9qhHresv6zZfSIoydEbbcl_yv5X9M3Gfp1lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1890233215</pqid></control><display><type>article</type><title>Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures</title><source>SpringerLink Journals</source><creator>Luo, M. ; Xu, Y. E. ; Song, Y. X.</creator><creatorcontrib>Luo, M. ; Xu, Y. E. ; Song, Y. X.</creatorcontrib><description>The structure and electronic properties of the WS
2
/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS
2
to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the
E
-field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS
2
/SiC vdW heterostructures is very promising for its potential use in nanodevices.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364017020035</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Compressive properties ; Condensed Matter ; Conduction bands ; Electric fields ; Electronic properties ; Energy gap ; Heterostructures ; Molecular ; Monolayers ; Nanotechnology devices ; Normal strain ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Solid State Physics ; Spintronics ; Valence band</subject><ispartof>JETP letters, 2017, Vol.105 (2), p.114-118</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5bc0d12761da4e80800375533b429da03e700b0afa0019f1d92cff7e4fbaebf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364017020035$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364017020035$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Luo, M.</creatorcontrib><creatorcontrib>Xu, Y. E.</creatorcontrib><creatorcontrib>Song, Y. X.</creatorcontrib><title>Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>The structure and electronic properties of the WS
2
/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS
2
to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the
E
-field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS
2
/SiC vdW heterostructures is very promising for its potential use in nanodevices.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Compressive properties</subject><subject>Condensed Matter</subject><subject>Conduction bands</subject><subject>Electric fields</subject><subject>Electronic properties</subject><subject>Energy gap</subject><subject>Heterostructures</subject><subject>Molecular</subject><subject>Monolayers</subject><subject>Nanotechnology devices</subject><subject>Normal strain</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Valence band</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQtRBIlMIHcLPEOTBjZz2iik0q4lA4R17GJVWaBDs59O9xVA5IiNM7vGXePMauEW4RZXq3ARAo8xSwAAEgsxO2QKggydOyOGWLmU5m_pxdhLADQCxlsWDmtbdTq8am73jvuFad5Vs1cH3gXe_3quVh9Krp-EyoCMPQNmQ5tWRG3xjuGmotj4JNs0q0CpH7pJF8H32TGSdP4ZKdOdUGuvrBJft4fHhfPSfrt6eX1f06MSIvxyTTBiyKIkerUiqhjG8UWSalTkVlFUgqADQop2L7yqGthHGuoNRpRdqhXLKbY-7g-6-Jwljv-sl38WSNZQVCSoFZVOFRZWLH4MnVg2_2yh9qhHresv6zZfSIoydEbbcl_yv5X9M3Gfp1lw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Luo, M.</creator><creator>Xu, Y. E.</creator><creator>Song, Y. X.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures</title><author>Luo, M. ; Xu, Y. E. ; Song, Y. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5bc0d12761da4e80800375533b429da03e700b0afa0019f1d92cff7e4fbaebf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Compressive properties</topic><topic>Condensed Matter</topic><topic>Conduction bands</topic><topic>Electric fields</topic><topic>Electronic properties</topic><topic>Energy gap</topic><topic>Heterostructures</topic><topic>Molecular</topic><topic>Monolayers</topic><topic>Nanotechnology devices</topic><topic>Normal strain</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, M.</creatorcontrib><creatorcontrib>Xu, Y. E.</creatorcontrib><creatorcontrib>Song, Y. X.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, M.</au><au>Xu, Y. E.</au><au>Song, Y. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2017</date><risdate>2017</risdate><volume>105</volume><issue>2</issue><spage>114</spage><epage>118</epage><pages>114-118</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>The structure and electronic properties of the WS
2
/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS
2
to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the
E
-field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS
2
/SiC vdW heterostructures is very promising for its potential use in nanodevices.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364017020035</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-3640 |
ispartof | JETP letters, 2017, Vol.105 (2), p.114-118 |
issn | 0021-3640 1090-6487 |
language | eng |
recordid | cdi_proquest_journals_1890233215 |
source | SpringerLink Journals |
subjects | Atomic Biological and Medical Physics Biophysics Compressive properties Condensed Matter Conduction bands Electric fields Electronic properties Energy gap Heterostructures Molecular Monolayers Nanotechnology devices Normal strain Optical and Plasma Physics Particle and Nuclear Physics Physics Physics and Astronomy Quantum Information Technology Solid State Physics Spintronics Valence band |
title | Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20band%20gap%20by%20normal%20strain%20and%20an%20applied%20electric%20field%20in%20SiC-based%20heterostructures&rft.jtitle=JETP%20letters&rft.au=Luo,%20M.&rft.date=2017&rft.volume=105&rft.issue=2&rft.spage=114&rft.epage=118&rft.pages=114-118&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364017020035&rft_dat=%3Cproquest_cross%3E1890233215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1890233215&rft_id=info:pmid/&rfr_iscdi=true |