Characterizing Ventilation and Exposure in Street Canyons Using Lagrangian Particles
The residence time measures the rate at which a pollutant escapes from a region of interest. Previous studies of urban ventilation have estimated the mean residence time from Eulerian data by assuming a spatially homogeneous pollutant field. Using a large-eddy simulation and a Lagrangian particle mo...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2017-05, Vol.56 (5), p.1177-1194 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1194 |
---|---|
container_issue | 5 |
container_start_page | 1177 |
container_title | Journal of applied meteorology and climatology |
container_volume | 56 |
creator | Lo, K. W. Ngan, K. |
description | The residence time measures the rate at which a pollutant escapes from a region of interest. Previous studies of urban ventilation have estimated the mean residence time from Eulerian data by assuming a spatially homogeneous pollutant field. Using a large-eddy simulation and a Lagrangian particle model, the residence and exposure times are calculated for an idealized street canyon in the skimming-flow region and a deep street canyon within a realistic urban area. For both domains, the mean residence time is on the order of a canyon circulation time scale, while the mean exposure time, which includes re-entrainment and characterizes the total time spent by a pollutant in a region of interest, is about 20% longer. Intensive quantities such as the Lagrangian visitation factor and return coefficient indicate that re-entrainment is modest. Probability distribution functions of the exposure and residence times are nearly exponential for both domains, in accord with pure diffusion and single-time-scale, vertical-exchange parameterizations. It is argued that, by analogy with Brownian motion, the mean residence and exposure times are set primarily by the mean circulation rather than the turbulence when the flow approximates that within a two-dimensional street canyon. |
doi_str_mv | 10.1175/jamc-d-16-0168.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1889835330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26179926</jstor_id><sourcerecordid>26179926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-8231eb110a09fafac9bb751f1fb01eca068280e23f64800b34428ca6397a10493</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7N0LA9dS8JJPJLMtYv6go2LoNb6aZmtJmapKC9dfbUunqvsU578Il5BrYAKDI7xa4arJZBipjoPQATkgP8lxnWgp-ery5PCcXMS4Yk7Io8h6ZVF8YsEk2uF_n5_TT-uSWmFznKfoZHf2su7gJljpPP1KwNtEK_bbzkU7jXhjjPKCfO_T0HUNyzdLGS3LW4jLaq__sk-nDaFI9ZeO3x-dqOM4aySBlmguwNQBDVrbYYlPWdZFDC23NwDbIlOaaWS5aJTVjtZCS6waVKAsEJkvRJ7eHv-vQfW9sTGbRbYLfVRrQutQiF4LtKHagmtDFGGxr1sGtMGwNMLPfzrwMXytzb0CZ_XYGdsrNQVnE1IUjzxUUZcmV-ANbM2wi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889835330</pqid></control><display><type>article</type><title>Characterizing Ventilation and Exposure in Street Canyons Using Lagrangian Particles</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lo, K. W. ; Ngan, K.</creator><creatorcontrib>Lo, K. W. ; Ngan, K.</creatorcontrib><description>The residence time measures the rate at which a pollutant escapes from a region of interest. Previous studies of urban ventilation have estimated the mean residence time from Eulerian data by assuming a spatially homogeneous pollutant field. Using a large-eddy simulation and a Lagrangian particle model, the residence and exposure times are calculated for an idealized street canyon in the skimming-flow region and a deep street canyon within a realistic urban area. For both domains, the mean residence time is on the order of a canyon circulation time scale, while the mean exposure time, which includes re-entrainment and characterizes the total time spent by a pollutant in a region of interest, is about 20% longer. Intensive quantities such as the Lagrangian visitation factor and return coefficient indicate that re-entrainment is modest. Probability distribution functions of the exposure and residence times are nearly exponential for both domains, in accord with pure diffusion and single-time-scale, vertical-exchange parameterizations. It is argued that, by analogy with Brownian motion, the mean residence and exposure times are set primarily by the mean circulation rather than the turbulence when the flow approximates that within a two-dimensional street canyon.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-16-0168.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Age ; Air exposure ; Air pollution ; Atoms & subatomic particles ; Brownian motion ; Circulation ; Computational fluid dynamics ; Dispersion ; Distribution functions ; Dye dispersion ; Entrainment ; Exposure ; Indoor air quality ; Lagrangian models ; Large eddy simulation ; Mathematical analysis ; Oceanic eddies ; Outdoor air quality ; Pollutants ; Probability distribution ; Probability distribution functions ; Probability theory ; Residence time ; Simulation ; Stochastic models ; Street canyons ; Theory ; Turbulence ; Turbulent flow ; Urban areas ; Urban studies ; Ventilation ; Vortices</subject><ispartof>Journal of applied meteorology and climatology, 2017-05, Vol.56 (5), p.1177-1194</ispartof><rights>2017 American Meteorological Society</rights><rights>Copyright American Meteorological Society May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-8231eb110a09fafac9bb751f1fb01eca068280e23f64800b34428ca6397a10493</citedby><cites>FETCH-LOGICAL-c401t-8231eb110a09fafac9bb751f1fb01eca068280e23f64800b34428ca6397a10493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26179926$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26179926$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Lo, K. W.</creatorcontrib><creatorcontrib>Ngan, K.</creatorcontrib><title>Characterizing Ventilation and Exposure in Street Canyons Using Lagrangian Particles</title><title>Journal of applied meteorology and climatology</title><description>The residence time measures the rate at which a pollutant escapes from a region of interest. Previous studies of urban ventilation have estimated the mean residence time from Eulerian data by assuming a spatially homogeneous pollutant field. Using a large-eddy simulation and a Lagrangian particle model, the residence and exposure times are calculated for an idealized street canyon in the skimming-flow region and a deep street canyon within a realistic urban area. For both domains, the mean residence time is on the order of a canyon circulation time scale, while the mean exposure time, which includes re-entrainment and characterizes the total time spent by a pollutant in a region of interest, is about 20% longer. Intensive quantities such as the Lagrangian visitation factor and return coefficient indicate that re-entrainment is modest. Probability distribution functions of the exposure and residence times are nearly exponential for both domains, in accord with pure diffusion and single-time-scale, vertical-exchange parameterizations. It is argued that, by analogy with Brownian motion, the mean residence and exposure times are set primarily by the mean circulation rather than the turbulence when the flow approximates that within a two-dimensional street canyon.</description><subject>Age</subject><subject>Air exposure</subject><subject>Air pollution</subject><subject>Atoms & subatomic particles</subject><subject>Brownian motion</subject><subject>Circulation</subject><subject>Computational fluid dynamics</subject><subject>Dispersion</subject><subject>Distribution functions</subject><subject>Dye dispersion</subject><subject>Entrainment</subject><subject>Exposure</subject><subject>Indoor air quality</subject><subject>Lagrangian models</subject><subject>Large eddy simulation</subject><subject>Mathematical analysis</subject><subject>Oceanic eddies</subject><subject>Outdoor air quality</subject><subject>Pollutants</subject><subject>Probability distribution</subject><subject>Probability distribution functions</subject><subject>Probability theory</subject><subject>Residence time</subject><subject>Simulation</subject><subject>Stochastic models</subject><subject>Street canyons</subject><subject>Theory</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Urban areas</subject><subject>Urban studies</subject><subject>Ventilation</subject><subject>Vortices</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEURYMoWKt7N0LA9dS8JJPJLMtYv6go2LoNb6aZmtJmapKC9dfbUunqvsU578Il5BrYAKDI7xa4arJZBipjoPQATkgP8lxnWgp-ery5PCcXMS4Yk7Io8h6ZVF8YsEk2uF_n5_TT-uSWmFznKfoZHf2su7gJljpPP1KwNtEK_bbzkU7jXhjjPKCfO_T0HUNyzdLGS3LW4jLaq__sk-nDaFI9ZeO3x-dqOM4aySBlmguwNQBDVrbYYlPWdZFDC23NwDbIlOaaWS5aJTVjtZCS6waVKAsEJkvRJ7eHv-vQfW9sTGbRbYLfVRrQutQiF4LtKHagmtDFGGxr1sGtMGwNMLPfzrwMXytzb0CZ_XYGdsrNQVnE1IUjzxUUZcmV-ANbM2wi</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Lo, K. W.</creator><creator>Ngan, K.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20170501</creationdate><title>Characterizing Ventilation and Exposure in Street Canyons Using Lagrangian Particles</title><author>Lo, K. W. ; Ngan, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-8231eb110a09fafac9bb751f1fb01eca068280e23f64800b34428ca6397a10493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Air exposure</topic><topic>Air pollution</topic><topic>Atoms & subatomic particles</topic><topic>Brownian motion</topic><topic>Circulation</topic><topic>Computational fluid dynamics</topic><topic>Dispersion</topic><topic>Distribution functions</topic><topic>Dye dispersion</topic><topic>Entrainment</topic><topic>Exposure</topic><topic>Indoor air quality</topic><topic>Lagrangian models</topic><topic>Large eddy simulation</topic><topic>Mathematical analysis</topic><topic>Oceanic eddies</topic><topic>Outdoor air quality</topic><topic>Pollutants</topic><topic>Probability distribution</topic><topic>Probability distribution functions</topic><topic>Probability theory</topic><topic>Residence time</topic><topic>Simulation</topic><topic>Stochastic models</topic><topic>Street canyons</topic><topic>Theory</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Urban areas</topic><topic>Urban studies</topic><topic>Ventilation</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, K. W.</creatorcontrib><creatorcontrib>Ngan, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, K. W.</au><au>Ngan, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Ventilation and Exposure in Street Canyons Using Lagrangian Particles</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>56</volume><issue>5</issue><spage>1177</spage><epage>1194</epage><pages>1177-1194</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>The residence time measures the rate at which a pollutant escapes from a region of interest. Previous studies of urban ventilation have estimated the mean residence time from Eulerian data by assuming a spatially homogeneous pollutant field. Using a large-eddy simulation and a Lagrangian particle model, the residence and exposure times are calculated for an idealized street canyon in the skimming-flow region and a deep street canyon within a realistic urban area. For both domains, the mean residence time is on the order of a canyon circulation time scale, while the mean exposure time, which includes re-entrainment and characterizes the total time spent by a pollutant in a region of interest, is about 20% longer. Intensive quantities such as the Lagrangian visitation factor and return coefficient indicate that re-entrainment is modest. Probability distribution functions of the exposure and residence times are nearly exponential for both domains, in accord with pure diffusion and single-time-scale, vertical-exchange parameterizations. It is argued that, by analogy with Brownian motion, the mean residence and exposure times are set primarily by the mean circulation rather than the turbulence when the flow approximates that within a two-dimensional street canyon.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-16-0168.1</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2017-05, Vol.56 (5), p.1177-1194 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_journals_1889835330 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Age Air exposure Air pollution Atoms & subatomic particles Brownian motion Circulation Computational fluid dynamics Dispersion Distribution functions Dye dispersion Entrainment Exposure Indoor air quality Lagrangian models Large eddy simulation Mathematical analysis Oceanic eddies Outdoor air quality Pollutants Probability distribution Probability distribution functions Probability theory Residence time Simulation Stochastic models Street canyons Theory Turbulence Turbulent flow Urban areas Urban studies Ventilation Vortices |
title | Characterizing Ventilation and Exposure in Street Canyons Using Lagrangian Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Ventilation%20and%20Exposure%20in%20Street%20Canyons%20Using%20Lagrangian%20Particles&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Lo,%20K.%20W.&rft.date=2017-05-01&rft.volume=56&rft.issue=5&rft.spage=1177&rft.epage=1194&rft.pages=1177-1194&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/jamc-d-16-0168.1&rft_dat=%3Cjstor_proqu%3E26179926%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889835330&rft_id=info:pmid/&rft_jstor_id=26179926&rfr_iscdi=true |