Coverage threshold for laser-induced lithography

Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2017-05, Vol.123 (5), p.1-8, Article 360
Hauptverfasser: Martins, Weliton S., Oriá, Marcos, Passerat de Silans, Thierry, Chevrollier, Martine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 5
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 123
creator Martins, Weliton S.
Oriá, Marcos
Passerat de Silans, Thierry
Chevrollier, Martine
description Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold.
doi_str_mv 10.1007/s00339-017-0968-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1889816122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1889816122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ca9b02f9daa4b86698e81341e0c5d40e20abf856cac1bbb179a834e150526f1f3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyRmA3v2Y5jj6gCilSJBWbLceymVYiDnSL170kVBhbecpd77pMOIbcI9whQPWQAzjUFrChoqag4IwsUnFGQHM7JArSoqOJaXpKrnPcwnWBsQWAVv32yW1-MbfK5jV1ThJiKzmaf6K5vDs43Rbcb27hNdmiP1-Qi2C77m99cko_np_fVmm7eXl5XjxvqOMqROqtrYEE31opaSamVV8gFenBlI8AzsHVQpXTWYV3XWGmruPBYQslkwMCX5G7eHVL8Ovg8mn08pH56aVAprVAiY1ML55ZLMefkgxnS7tOmo0EwJzFmFmMmMeYkxoiJYTOTp26_9enP8r_QD3ayZRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889816122</pqid></control><display><type>article</type><title>Coverage threshold for laser-induced lithography</title><source>Springer Nature - Complete Springer Journals</source><creator>Martins, Weliton S. ; Oriá, Marcos ; Passerat de Silans, Thierry ; Chevrollier, Martine</creator><creatorcontrib>Martins, Weliton S. ; Oriá, Marcos ; Passerat de Silans, Thierry ; Chevrollier, Martine</creatorcontrib><description>Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-017-0968-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adatoms ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Film growth ; Luminous intensity ; Machines ; Manufacturing ; Materials science ; Multilayers ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thickness ; Thin Films ; Vapors</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2017-05, Vol.123 (5), p.1-8, Article 360</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ca9b02f9daa4b86698e81341e0c5d40e20abf856cac1bbb179a834e150526f1f3</citedby><cites>FETCH-LOGICAL-c316t-ca9b02f9daa4b86698e81341e0c5d40e20abf856cac1bbb179a834e150526f1f3</cites><orcidid>0000-0001-8056-6896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-017-0968-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-017-0968-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Martins, Weliton S.</creatorcontrib><creatorcontrib>Oriá, Marcos</creatorcontrib><creatorcontrib>Passerat de Silans, Thierry</creatorcontrib><creatorcontrib>Chevrollier, Martine</creatorcontrib><title>Coverage threshold for laser-induced lithography</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold.</description><subject>Adatoms</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Film growth</subject><subject>Luminous intensity</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Vapors</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqXwAWyRmA3v2Y5jj6gCilSJBWbLceymVYiDnSL170kVBhbecpd77pMOIbcI9whQPWQAzjUFrChoqag4IwsUnFGQHM7JArSoqOJaXpKrnPcwnWBsQWAVv32yW1-MbfK5jV1ThJiKzmaf6K5vDs43Rbcb27hNdmiP1-Qi2C77m99cko_np_fVmm7eXl5XjxvqOMqROqtrYEE31opaSamVV8gFenBlI8AzsHVQpXTWYV3XWGmruPBYQslkwMCX5G7eHVL8Ovg8mn08pH56aVAprVAiY1ML55ZLMefkgxnS7tOmo0EwJzFmFmMmMeYkxoiJYTOTp26_9enP8r_QD3ayZRw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Martins, Weliton S.</creator><creator>Oriá, Marcos</creator><creator>Passerat de Silans, Thierry</creator><creator>Chevrollier, Martine</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8056-6896</orcidid></search><sort><creationdate>20170501</creationdate><title>Coverage threshold for laser-induced lithography</title><author>Martins, Weliton S. ; Oriá, Marcos ; Passerat de Silans, Thierry ; Chevrollier, Martine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ca9b02f9daa4b86698e81341e0c5d40e20abf856cac1bbb179a834e150526f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adatoms</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Film growth</topic><topic>Luminous intensity</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Weliton S.</creatorcontrib><creatorcontrib>Oriá, Marcos</creatorcontrib><creatorcontrib>Passerat de Silans, Thierry</creatorcontrib><creatorcontrib>Chevrollier, Martine</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Weliton S.</au><au>Oriá, Marcos</au><au>Passerat de Silans, Thierry</au><au>Chevrollier, Martine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coverage threshold for laser-induced lithography</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>123</volume><issue>5</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>360</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-017-0968-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8056-6896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2017-05, Vol.123 (5), p.1-8, Article 360
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_1889816122
source Springer Nature - Complete Springer Journals
subjects Adatoms
Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Film growth
Luminous intensity
Machines
Manufacturing
Materials science
Multilayers
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Thickness
Thin Films
Vapors
title Coverage threshold for laser-induced lithography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coverage%20threshold%20for%20laser-induced%20lithography&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Martins,%20Weliton%20S.&rft.date=2017-05-01&rft.volume=123&rft.issue=5&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=360&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-017-0968-4&rft_dat=%3Cproquest_cross%3E1889816122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889816122&rft_id=info:pmid/&rfr_iscdi=true