Coverage threshold for laser-induced lithography
Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2017-05, Vol.123 (5), p.1-8, Article 360 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 123 |
creator | Martins, Weliton S. Oriá, Marcos Passerat de Silans, Thierry Chevrollier, Martine |
description | Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold. |
doi_str_mv | 10.1007/s00339-017-0968-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1889816122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1889816122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ca9b02f9daa4b86698e81341e0c5d40e20abf856cac1bbb179a834e150526f1f3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyRmA3v2Y5jj6gCilSJBWbLceymVYiDnSL170kVBhbecpd77pMOIbcI9whQPWQAzjUFrChoqag4IwsUnFGQHM7JArSoqOJaXpKrnPcwnWBsQWAVv32yW1-MbfK5jV1ThJiKzmaf6K5vDs43Rbcb27hNdmiP1-Qi2C77m99cko_np_fVmm7eXl5XjxvqOMqROqtrYEE31opaSamVV8gFenBlI8AzsHVQpXTWYV3XWGmruPBYQslkwMCX5G7eHVL8Ovg8mn08pH56aVAprVAiY1ML55ZLMefkgxnS7tOmo0EwJzFmFmMmMeYkxoiJYTOTp26_9enP8r_QD3ayZRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889816122</pqid></control><display><type>article</type><title>Coverage threshold for laser-induced lithography</title><source>Springer Nature - Complete Springer Journals</source><creator>Martins, Weliton S. ; Oriá, Marcos ; Passerat de Silans, Thierry ; Chevrollier, Martine</creator><creatorcontrib>Martins, Weliton S. ; Oriá, Marcos ; Passerat de Silans, Thierry ; Chevrollier, Martine</creatorcontrib><description>Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-017-0968-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adatoms ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Film growth ; Luminous intensity ; Machines ; Manufacturing ; Materials science ; Multilayers ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thickness ; Thin Films ; Vapors</subject><ispartof>Applied physics. A, Materials science & processing, 2017-05, Vol.123 (5), p.1-8, Article 360</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ca9b02f9daa4b86698e81341e0c5d40e20abf856cac1bbb179a834e150526f1f3</citedby><cites>FETCH-LOGICAL-c316t-ca9b02f9daa4b86698e81341e0c5d40e20abf856cac1bbb179a834e150526f1f3</cites><orcidid>0000-0001-8056-6896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-017-0968-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-017-0968-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Martins, Weliton S.</creatorcontrib><creatorcontrib>Oriá, Marcos</creatorcontrib><creatorcontrib>Passerat de Silans, Thierry</creatorcontrib><creatorcontrib>Chevrollier, Martine</creatorcontrib><title>Coverage threshold for laser-induced lithography</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold.</description><subject>Adatoms</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Film growth</subject><subject>Luminous intensity</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Vapors</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqXwAWyRmA3v2Y5jj6gCilSJBWbLceymVYiDnSL170kVBhbecpd77pMOIbcI9whQPWQAzjUFrChoqag4IwsUnFGQHM7JArSoqOJaXpKrnPcwnWBsQWAVv32yW1-MbfK5jV1ThJiKzmaf6K5vDs43Rbcb27hNdmiP1-Qi2C77m99cko_np_fVmm7eXl5XjxvqOMqROqtrYEE31opaSamVV8gFenBlI8AzsHVQpXTWYV3XWGmruPBYQslkwMCX5G7eHVL8Ovg8mn08pH56aVAprVAiY1ML55ZLMefkgxnS7tOmo0EwJzFmFmMmMeYkxoiJYTOTp26_9enP8r_QD3ayZRw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Martins, Weliton S.</creator><creator>Oriá, Marcos</creator><creator>Passerat de Silans, Thierry</creator><creator>Chevrollier, Martine</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8056-6896</orcidid></search><sort><creationdate>20170501</creationdate><title>Coverage threshold for laser-induced lithography</title><author>Martins, Weliton S. ; Oriá, Marcos ; Passerat de Silans, Thierry ; Chevrollier, Martine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ca9b02f9daa4b86698e81341e0c5d40e20abf856cac1bbb179a834e150526f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adatoms</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Film growth</topic><topic>Luminous intensity</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Weliton S.</creatorcontrib><creatorcontrib>Oriá, Marcos</creatorcontrib><creatorcontrib>Passerat de Silans, Thierry</creatorcontrib><creatorcontrib>Chevrollier, Martine</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Weliton S.</au><au>Oriá, Marcos</au><au>Passerat de Silans, Thierry</au><au>Chevrollier, Martine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coverage threshold for laser-induced lithography</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>123</volume><issue>5</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>360</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-017-0968-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8056-6896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2017-05, Vol.123 (5), p.1-8, Article 360 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_1889816122 |
source | Springer Nature - Complete Springer Journals |
subjects | Adatoms Applied physics Characterization and Evaluation of Materials Condensed Matter Physics Film growth Luminous intensity Machines Manufacturing Materials science Multilayers Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Surfaces and Interfaces Thickness Thin Films Vapors |
title | Coverage threshold for laser-induced lithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coverage%20threshold%20for%20laser-induced%20lithography&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Martins,%20Weliton%20S.&rft.date=2017-05-01&rft.volume=123&rft.issue=5&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=360&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-017-0968-4&rft_dat=%3Cproquest_cross%3E1889816122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889816122&rft_id=info:pmid/&rfr_iscdi=true |