Interactive Markov Models of Optimization Search Strategies

This paper introduces a Markov model for evolutionary algorithms (EAs) that is based on interactions among individuals in the population. This interactive Markov model has the potential to provide tractable models for optimization problems of realistic size. We propose two simple discrete optimizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2017-05, Vol.47 (5), p.808-825
Hauptverfasser: Haiping Ma, Simon, Dan, Minrui Fei, Hongwei Mo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 5
container_start_page 808
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 47
creator Haiping Ma
Simon, Dan
Minrui Fei
Hongwei Mo
description This paper introduces a Markov model for evolutionary algorithms (EAs) that is based on interactions among individuals in the population. This interactive Markov model has the potential to provide tractable models for optimization problems of realistic size. We propose two simple discrete optimization search strategies with population-proportion-based selection and a modified mutation operator. The probability of selection is linearly proportional to the number of individuals at each point of the search space. The mutation operator randomly modifies an entire individual rather than a single decision variable. We exactly model these optimization search strategies with interactive Markov models. We present simulation results to confirm the interactive Markov model theory. We show that genetic algorithms and biogeography-based optimization perform better with the addition of population-proportion-based selection on a set of real-world benchmarks. We note that many other EAs, both new and old, might be able to be improved with this addition, or modeled with this method.
doi_str_mv 10.1109/TSMC.2015.2507588
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1889554492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7364273</ieee_id><sourcerecordid>1889554492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4f2efcf6ca6ccef3cf4e08a8413d6689d7ee4f031d3e01940bacefc9953940433</originalsourceid><addsrcrecordid>eNo9kE1rAjEQhkNpoWL9AaWXhZ7XJplsNqGnIv0QFA_ac0izkzZWXZtEof31XVE8zTvwvDPwEHLL6JAxqh8W8-loyCmrhryidaXUBelxJlXJOfDLc2bymgxSWlJKGVcSqOyRx_EmY7Quhz0WUxu_230xbRtcpaL1xWybwzr82RzaTTFHG91XMc_RZvwMmG7IlberhIPT7JP3l-fF6K2czF7Ho6dJ6QBkLoXn6J2Xzkrn0IPzAqmySjBopFS6qRGFp8AaQMq0oB-2w5zWFXSLAOiT--PdbWx_dpiyWba7uOleGqaUriohNO8odqRcbFOK6M02hrWNv4ZRc9BkDprMQZM5aeo6d8dOQMQzX4MUvAb4B9JBY1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889554492</pqid></control><display><type>article</type><title>Interactive Markov Models of Optimization Search Strategies</title><source>IEEE Electronic Library (IEL)</source><creator>Haiping Ma ; Simon, Dan ; Minrui Fei ; Hongwei Mo</creator><creatorcontrib>Haiping Ma ; Simon, Dan ; Minrui Fei ; Hongwei Mo</creatorcontrib><description>This paper introduces a Markov model for evolutionary algorithms (EAs) that is based on interactions among individuals in the population. This interactive Markov model has the potential to provide tractable models for optimization problems of realistic size. We propose two simple discrete optimization search strategies with population-proportion-based selection and a modified mutation operator. The probability of selection is linearly proportional to the number of individuals at each point of the search space. The mutation operator randomly modifies an entire individual rather than a single decision variable. We exactly model these optimization search strategies with interactive Markov models. We present simulation results to confirm the interactive Markov model theory. We show that genetic algorithms and biogeography-based optimization perform better with the addition of population-proportion-based selection on a set of real-world benchmarks. We note that many other EAs, both new and old, might be able to be improved with this addition, or modeled with this method.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2015.2507588</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Evolutionary algorithm (EA) ; interactive Markov model ; Markov chains ; Markov model ; Markov processes ; Mathematical model ; Optimization ; optimization search strategy ; population-proportion-based selection ; Sociology ; Statistics</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2017-05, Vol.47 (5), p.808-825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4f2efcf6ca6ccef3cf4e08a8413d6689d7ee4f031d3e01940bacefc9953940433</citedby><cites>FETCH-LOGICAL-c336t-4f2efcf6ca6ccef3cf4e08a8413d6689d7ee4f031d3e01940bacefc9953940433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7364273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7364273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haiping Ma</creatorcontrib><creatorcontrib>Simon, Dan</creatorcontrib><creatorcontrib>Minrui Fei</creatorcontrib><creatorcontrib>Hongwei Mo</creatorcontrib><title>Interactive Markov Models of Optimization Search Strategies</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This paper introduces a Markov model for evolutionary algorithms (EAs) that is based on interactions among individuals in the population. This interactive Markov model has the potential to provide tractable models for optimization problems of realistic size. We propose two simple discrete optimization search strategies with population-proportion-based selection and a modified mutation operator. The probability of selection is linearly proportional to the number of individuals at each point of the search space. The mutation operator randomly modifies an entire individual rather than a single decision variable. We exactly model these optimization search strategies with interactive Markov models. We present simulation results to confirm the interactive Markov model theory. We show that genetic algorithms and biogeography-based optimization perform better with the addition of population-proportion-based selection on a set of real-world benchmarks. We note that many other EAs, both new and old, might be able to be improved with this addition, or modeled with this method.</description><subject>Computational modeling</subject><subject>Evolutionary algorithm (EA)</subject><subject>interactive Markov model</subject><subject>Markov chains</subject><subject>Markov model</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>optimization search strategy</subject><subject>population-proportion-based selection</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEQhkNpoWL9AaWXhZ7XJplsNqGnIv0QFA_ac0izkzZWXZtEof31XVE8zTvwvDPwEHLL6JAxqh8W8-loyCmrhryidaXUBelxJlXJOfDLc2bymgxSWlJKGVcSqOyRx_EmY7Quhz0WUxu_230xbRtcpaL1xWybwzr82RzaTTFHG91XMc_RZvwMmG7IlberhIPT7JP3l-fF6K2czF7Ho6dJ6QBkLoXn6J2Xzkrn0IPzAqmySjBopFS6qRGFp8AaQMq0oB-2w5zWFXSLAOiT--PdbWx_dpiyWba7uOleGqaUriohNO8odqRcbFOK6M02hrWNv4ZRc9BkDprMQZM5aeo6d8dOQMQzX4MUvAb4B9JBY1Y</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Haiping Ma</creator><creator>Simon, Dan</creator><creator>Minrui Fei</creator><creator>Hongwei Mo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170501</creationdate><title>Interactive Markov Models of Optimization Search Strategies</title><author>Haiping Ma ; Simon, Dan ; Minrui Fei ; Hongwei Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4f2efcf6ca6ccef3cf4e08a8413d6689d7ee4f031d3e01940bacefc9953940433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational modeling</topic><topic>Evolutionary algorithm (EA)</topic><topic>interactive Markov model</topic><topic>Markov chains</topic><topic>Markov model</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>optimization search strategy</topic><topic>population-proportion-based selection</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haiping Ma</creatorcontrib><creatorcontrib>Simon, Dan</creatorcontrib><creatorcontrib>Minrui Fei</creatorcontrib><creatorcontrib>Hongwei Mo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haiping Ma</au><au>Simon, Dan</au><au>Minrui Fei</au><au>Hongwei Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Markov Models of Optimization Search Strategies</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>47</volume><issue>5</issue><spage>808</spage><epage>825</epage><pages>808-825</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This paper introduces a Markov model for evolutionary algorithms (EAs) that is based on interactions among individuals in the population. This interactive Markov model has the potential to provide tractable models for optimization problems of realistic size. We propose two simple discrete optimization search strategies with population-proportion-based selection and a modified mutation operator. The probability of selection is linearly proportional to the number of individuals at each point of the search space. The mutation operator randomly modifies an entire individual rather than a single decision variable. We exactly model these optimization search strategies with interactive Markov models. We present simulation results to confirm the interactive Markov model theory. We show that genetic algorithms and biogeography-based optimization perform better with the addition of population-proportion-based selection on a set of real-world benchmarks. We note that many other EAs, both new and old, might be able to be improved with this addition, or modeled with this method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2015.2507588</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2017-05, Vol.47 (5), p.808-825
issn 2168-2216
2168-2232
language eng
recordid cdi_proquest_journals_1889554492
source IEEE Electronic Library (IEL)
subjects Computational modeling
Evolutionary algorithm (EA)
interactive Markov model
Markov chains
Markov model
Markov processes
Mathematical model
Optimization
optimization search strategy
population-proportion-based selection
Sociology
Statistics
title Interactive Markov Models of Optimization Search Strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Markov%20Models%20of%20Optimization%20Search%20Strategies&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Haiping%20Ma&rft.date=2017-05-01&rft.volume=47&rft.issue=5&rft.spage=808&rft.epage=825&rft.pages=808-825&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2015.2507588&rft_dat=%3Cproquest_RIE%3E1889554492%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889554492&rft_id=info:pmid/&rft_ieee_id=7364273&rfr_iscdi=true