On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind
The threshold for the onset of breaking proposed by Barthelemy et al. (arXiv:1508.06002v1, 2015) has been investigated in the laboratory for unidirectional wave groups in deep water and extended to include different classes of wave groups and moderate wind forcing. Thermal image velocimetry was used...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2017-01, Vol.811, p.642-658 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | |
container_start_page | 642 |
container_title | Journal of fluid mechanics |
container_volume | 811 |
creator | Saket, Arvin Peirson, William L. Banner, Michael L. Barthelemy, Xavier Allis, Michael J. |
description | The threshold for the onset of breaking proposed by Barthelemy et al. (arXiv:1508.06002v1, 2015) has been investigated in the laboratory for unidirectional wave groups in deep water and extended to include different classes of wave groups and moderate wind forcing. Thermal image velocimetry was used to compare measurements of the wave crest point (maximum elevation and also the point of maximum) surface water particle velocity (
$U_{s}$
) with the wave crest point speed (
$C$
) determined by an array of closely spaced wave gauges. The crest point surface energy flux ratio
$B_{x}=U_{s}/C$
that distinguishes maximum recurrence from marginal breaking was found to be
$0.840\pm 0.016$
. Increasing wind forcing from zero to
$U_{\unicode[STIX]{x1D706}/4}/C_{0}=1.42$
systematically increased this threshold by 2 %. Increasing the spectral bandwidth (decreasing the Benjamin–Feir index from 0.39 to 0.31) systematically reduced the threshold by 1.5 %. |
doi_str_mv | 10.1017/jfm.2016.776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1889008380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_776</cupid><sourcerecordid>4321783577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-395303647f3db7552e2e691a26d419b1997fb2f47e6e8b7dc8d6a369a39d53023</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMssZLgj8SOR1RBQarUBWbLic9tShMHO6Xi3-PSDgwMp9NJz_vo9CJ0S0lOCZUPG9fljFCRSynO0IQWQmVSFOU5mhDCWEYpI5foKsYNIZQTJSdoWPZ4XEOaAHHttxY7H_DefAGuA5iPtl9h7_C495ltO-hj63uzxRZgSNQIJ3YV_G6IuD3KTB2hb9LuLR6S9_dIln3b22t04cw2ws1pT9H789Pb7CVbLOevs8dF1nBRjRlXJSdcFNJxW8uyZMBAKGqYsAVVNVVKupq5QoKAqpa2qawwXCjDlU1Jxqfo7ugdgv_cQRz1xu9C-j1qWlWKkIpXJFH3R6oJPsYATg-h7Uz41pToQ6c6daoPnerUacLzE266OrR2BX-s_wV-ADLkeSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889008380</pqid></control><display><type>article</type><title>On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind</title><source>Cambridge University Press Journals Complete</source><creator>Saket, Arvin ; Peirson, William L. ; Banner, Michael L. ; Barthelemy, Xavier ; Allis, Michael J.</creator><creatorcontrib>Saket, Arvin ; Peirson, William L. ; Banner, Michael L. ; Barthelemy, Xavier ; Allis, Michael J.</creatorcontrib><description>The threshold for the onset of breaking proposed by Barthelemy et al. (arXiv:1508.06002v1, 2015) has been investigated in the laboratory for unidirectional wave groups in deep water and extended to include different classes of wave groups and moderate wind forcing. Thermal image velocimetry was used to compare measurements of the wave crest point (maximum elevation and also the point of maximum) surface water particle velocity (
$U_{s}$
) with the wave crest point speed (
$C$
) determined by an array of closely spaced wave gauges. The crest point surface energy flux ratio
$B_{x}=U_{s}/C$
that distinguishes maximum recurrence from marginal breaking was found to be
$0.840\pm 0.016$
. Increasing wind forcing from zero to
$U_{\unicode[STIX]{x1D706}/4}/C_{0}=1.42$
systematically increased this threshold by 2 %. Increasing the spectral bandwidth (decreasing the Benjamin–Feir index from 0.39 to 0.31) systematically reduced the threshold by 1.5 %.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.776</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Deep water ; Gauges ; Surface water ; Water waves ; Wave crest</subject><ispartof>Journal of fluid mechanics, 2017-01, Vol.811, p.642-658</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-395303647f3db7552e2e691a26d419b1997fb2f47e6e8b7dc8d6a369a39d53023</citedby><cites>FETCH-LOGICAL-c368t-395303647f3db7552e2e691a26d419b1997fb2f47e6e8b7dc8d6a369a39d53023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211201600776X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Saket, Arvin</creatorcontrib><creatorcontrib>Peirson, William L.</creatorcontrib><creatorcontrib>Banner, Michael L.</creatorcontrib><creatorcontrib>Barthelemy, Xavier</creatorcontrib><creatorcontrib>Allis, Michael J.</creatorcontrib><title>On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The threshold for the onset of breaking proposed by Barthelemy et al. (arXiv:1508.06002v1, 2015) has been investigated in the laboratory for unidirectional wave groups in deep water and extended to include different classes of wave groups and moderate wind forcing. Thermal image velocimetry was used to compare measurements of the wave crest point (maximum elevation and also the point of maximum) surface water particle velocity (
$U_{s}$
) with the wave crest point speed (
$C$
) determined by an array of closely spaced wave gauges. The crest point surface energy flux ratio
$B_{x}=U_{s}/C$
that distinguishes maximum recurrence from marginal breaking was found to be
$0.840\pm 0.016$
. Increasing wind forcing from zero to
$U_{\unicode[STIX]{x1D706}/4}/C_{0}=1.42$
systematically increased this threshold by 2 %. Increasing the spectral bandwidth (decreasing the Benjamin–Feir index from 0.39 to 0.31) systematically reduced the threshold by 1.5 %.</description><subject>Deep water</subject><subject>Gauges</subject><subject>Surface water</subject><subject>Water waves</subject><subject>Wave crest</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMssZLgj8SOR1RBQarUBWbLic9tShMHO6Xi3-PSDgwMp9NJz_vo9CJ0S0lOCZUPG9fljFCRSynO0IQWQmVSFOU5mhDCWEYpI5foKsYNIZQTJSdoWPZ4XEOaAHHttxY7H_DefAGuA5iPtl9h7_C495ltO-hj63uzxRZgSNQIJ3YV_G6IuD3KTB2hb9LuLR6S9_dIln3b22t04cw2ws1pT9H789Pb7CVbLOevs8dF1nBRjRlXJSdcFNJxW8uyZMBAKGqYsAVVNVVKupq5QoKAqpa2qawwXCjDlU1Jxqfo7ugdgv_cQRz1xu9C-j1qWlWKkIpXJFH3R6oJPsYATg-h7Uz41pToQ6c6daoPnerUacLzE266OrR2BX-s_wV-ADLkeSM</recordid><startdate>20170125</startdate><enddate>20170125</enddate><creator>Saket, Arvin</creator><creator>Peirson, William L.</creator><creator>Banner, Michael L.</creator><creator>Barthelemy, Xavier</creator><creator>Allis, Michael J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170125</creationdate><title>On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind</title><author>Saket, Arvin ; Peirson, William L. ; Banner, Michael L. ; Barthelemy, Xavier ; Allis, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-395303647f3db7552e2e691a26d419b1997fb2f47e6e8b7dc8d6a369a39d53023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deep water</topic><topic>Gauges</topic><topic>Surface water</topic><topic>Water waves</topic><topic>Wave crest</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saket, Arvin</creatorcontrib><creatorcontrib>Peirson, William L.</creatorcontrib><creatorcontrib>Banner, Michael L.</creatorcontrib><creatorcontrib>Barthelemy, Xavier</creatorcontrib><creatorcontrib>Allis, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saket, Arvin</au><au>Peirson, William L.</au><au>Banner, Michael L.</au><au>Barthelemy, Xavier</au><au>Allis, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-01-25</date><risdate>2017</risdate><volume>811</volume><spage>642</spage><epage>658</epage><pages>642-658</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The threshold for the onset of breaking proposed by Barthelemy et al. (arXiv:1508.06002v1, 2015) has been investigated in the laboratory for unidirectional wave groups in deep water and extended to include different classes of wave groups and moderate wind forcing. Thermal image velocimetry was used to compare measurements of the wave crest point (maximum elevation and also the point of maximum) surface water particle velocity (
$U_{s}$
) with the wave crest point speed (
$C$
) determined by an array of closely spaced wave gauges. The crest point surface energy flux ratio
$B_{x}=U_{s}/C$
that distinguishes maximum recurrence from marginal breaking was found to be
$0.840\pm 0.016$
. Increasing wind forcing from zero to
$U_{\unicode[STIX]{x1D706}/4}/C_{0}=1.42$
systematically increased this threshold by 2 %. Increasing the spectral bandwidth (decreasing the Benjamin–Feir index from 0.39 to 0.31) systematically reduced the threshold by 1.5 %.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.776</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2017-01, Vol.811, p.642-658 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1889008380 |
source | Cambridge University Press Journals Complete |
subjects | Deep water Gauges Surface water Water waves Wave crest |
title | On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20threshold%20for%20wave%20breaking%20of%20two-dimensional%20deep%20water%20wave%20groups%20in%20the%20absence%20and%20presence%20of%20wind&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Saket,%20Arvin&rft.date=2017-01-25&rft.volume=811&rft.spage=642&rft.epage=658&rft.pages=642-658&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.776&rft_dat=%3Cproquest_cross%3E4321783577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889008380&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_776&rfr_iscdi=true |