Bulk Expansion Effect of Gallium-Based Thermal Interface Material

The bulk expansion effect of gallium-based thermal interface materials (GBTIMs) was experimentally disclosed and clarified for the first time. GBTIMs were prepared under low (26 %) and high (96 %) relative humidity for a short (2 h) and long (5 h) time periods. An evident volume expansion phenomenon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2017, Vol.38 (6), p.1-10, Article 91
Hauptverfasser: Ding, Yujie, Deng, Zhongshan, Cai, Changli, Yang, Zejun, Yang, Yingbao, Lu, Jinrong, Gao, Yunxia, Liu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bulk expansion effect of gallium-based thermal interface materials (GBTIMs) was experimentally disclosed and clarified for the first time. GBTIMs were prepared under low (26 %) and high (96 %) relative humidity for a short (2 h) and long (5 h) time periods. An evident volume expansion phenomenon was observed with adequate humidity. Higher humidity resulted in bigger expansion rate and expansion coefficient. The expansion coefficient could reach surprisingly large value of 1.5 for GBTIMs under 96% relative humidity. Assuming that the volume change was related to chemical reactions in the mixture, SEM and XRD were adopted to determine the structure and phase components of the samples. The gases produced in the expansion process were detected with gas chromatography and a large amount of hydrogen was found. The results indicated that the hydrogen produced by the reaction between gallium oxide Ga 2 O and water in GBTIMs caused the expansion effect. The corroded GBTIMs were mainly composed of gallium oxide Ga 2 O 3 and became loose and porous solids after expansion. Thermal conductivity decreased dramatically after the expansion process due to the composition and structure changes. From the view point of application, the ambient humidity and oxidation degree must be controlled during preparation of such thermal interface material to avoid its bulk expansion effect.
ISSN:0195-928X
1572-9567
DOI:10.1007/s10765-017-2226-6