Super Resolution of PET Images using Hybrid Regularization

Positron emission tomography images are used to diagnose, staggering, and monitoring several diseases like cancer and Alzheimer, also, this technique is used in clinical research to help to assess the therapeutic and toxic effects of drugs. However, a main drawback of this modality is the poor spati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of image, graphics and signal processing graphics and signal processing, 2017-01, Vol.9 (1), p.1-9
Hauptverfasser: Mejia, Jose, Mederos, Boris, Avelar-Sosa, Liliana, Ortega Maynez, Leticia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title International journal of image, graphics and signal processing
container_volume 9
creator Mejia, Jose
Mederos, Boris
Avelar-Sosa, Liliana
Ortega Maynez, Leticia
description Positron emission tomography images are used to diagnose, staggering, and monitoring several diseases like cancer and Alzheimer, also, this technique is used in clinical research to help to assess the therapeutic and toxic effects of drugs. However, a main drawback of this modality is the poor spatial resolution due to limiting factors such as positron range, instrumentation limits and the allowable doses of radiotracer for administration to patients. These factors also lead to low signal to noise ratios in the images. In this paper, we proposed to increment the resolution of the image and reduce noise by implementing a super resolution scheme, we proposed to use a hybrid regularization consisting of a TV term plus a Tikhonov term to solve the problem of low resolution and heavy noise. By using an anatomical driven scheme to balance between regularization terms we attain a better resolution image with preservation of small structures like lesions and reduced noise without blurring the edges of images. Experimental results and comparisons with other methods of the state-of-the-art show that our proposed scheme produces better preservation of details without adding artifacts when the resolution factor is increased.
doi_str_mv 10.5815/ijigsp.2017.01.01
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1886765554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321640997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1131-87a5fb7030e5f932d5d08da87509f3ee3510bc6fda865d3ee4a2ce15af20ec123</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGp_gLcFz1tnkp1N6k1KtYWCovUcsrvJktJ216R7qL_elIrDgxkeH_PgMXaPMCWF9Oi3vo39lAPKKWDSFRtxkEU-A8Wv_29Z3LJJjFtIUxIKWYzY0-fQ25B92NjthqPvDlnnsvfFJlvtTWtjNkR_aLPlqQq-SVQ77EzwP-ZM3rEbZ3bRTv72mH29LDbzZb5-e13Nn9d5jSgwV9KQqyQIsORmgjfUgGqMkgQzJ6wVhFDVpUtWSU0yCsNri2QcB1sjF2P2cPnbh-57sPGot90QDilSo1KlLImoSBReqDp0MQbrdB_83oSTRtDnlvSlJX1uSQMmiV9_TVsl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886765554</pqid></control><display><type>article</type><title>Super Resolution of PET Images using Hybrid Regularization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mejia, Jose ; Mederos, Boris ; Avelar-Sosa, Liliana ; Ortega Maynez, Leticia</creator><creatorcontrib>Mejia, Jose ; Mederos, Boris ; Avelar-Sosa, Liliana ; Ortega Maynez, Leticia ; UACJ/Department of electrical and computation, Juarez, Mexico</creatorcontrib><description>Positron emission tomography images are used to diagnose, staggering, and monitoring several diseases like cancer and Alzheimer, also, this technique is used in clinical research to help to assess the therapeutic and toxic effects of drugs. However, a main drawback of this modality is the poor spatial resolution due to limiting factors such as positron range, instrumentation limits and the allowable doses of radiotracer for administration to patients. These factors also lead to low signal to noise ratios in the images. In this paper, we proposed to increment the resolution of the image and reduce noise by implementing a super resolution scheme, we proposed to use a hybrid regularization consisting of a TV term plus a Tikhonov term to solve the problem of low resolution and heavy noise. By using an anatomical driven scheme to balance between regularization terms we attain a better resolution image with preservation of small structures like lesions and reduced noise without blurring the edges of images. Experimental results and comparisons with other methods of the state-of-the-art show that our proposed scheme produces better preservation of details without adding artifacts when the resolution factor is increased.</description><identifier>ISSN: 2074-9074</identifier><identifier>EISSN: 2074-9082</identifier><identifier>DOI: 10.5815/ijigsp.2017.01.01</identifier><language>eng</language><publisher>Hong Kong: Modern Education and Computer Science Press</publisher><ispartof>International journal of image, graphics and signal processing, 2017-01, Vol.9 (1), p.1-9</ispartof><rights>Copyright Modern Education and Computer Science Press Jan 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mejia, Jose</creatorcontrib><creatorcontrib>Mederos, Boris</creatorcontrib><creatorcontrib>Avelar-Sosa, Liliana</creatorcontrib><creatorcontrib>Ortega Maynez, Leticia</creatorcontrib><creatorcontrib>UACJ/Department of electrical and computation, Juarez, Mexico</creatorcontrib><title>Super Resolution of PET Images using Hybrid Regularization</title><title>International journal of image, graphics and signal processing</title><description>Positron emission tomography images are used to diagnose, staggering, and monitoring several diseases like cancer and Alzheimer, also, this technique is used in clinical research to help to assess the therapeutic and toxic effects of drugs. However, a main drawback of this modality is the poor spatial resolution due to limiting factors such as positron range, instrumentation limits and the allowable doses of radiotracer for administration to patients. These factors also lead to low signal to noise ratios in the images. In this paper, we proposed to increment the resolution of the image and reduce noise by implementing a super resolution scheme, we proposed to use a hybrid regularization consisting of a TV term plus a Tikhonov term to solve the problem of low resolution and heavy noise. By using an anatomical driven scheme to balance between regularization terms we attain a better resolution image with preservation of small structures like lesions and reduced noise without blurring the edges of images. Experimental results and comparisons with other methods of the state-of-the-art show that our proposed scheme produces better preservation of details without adding artifacts when the resolution factor is increased.</description><issn>2074-9074</issn><issn>2074-9082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kEFLAzEQhYMoWGp_gLcFz1tnkp1N6k1KtYWCovUcsrvJktJ216R7qL_elIrDgxkeH_PgMXaPMCWF9Oi3vo39lAPKKWDSFRtxkEU-A8Wv_29Z3LJJjFtIUxIKWYzY0-fQ25B92NjthqPvDlnnsvfFJlvtTWtjNkR_aLPlqQq-SVQ77EzwP-ZM3rEbZ3bRTv72mH29LDbzZb5-e13Nn9d5jSgwV9KQqyQIsORmgjfUgGqMkgQzJ6wVhFDVpUtWSU0yCsNri2QcB1sjF2P2cPnbh-57sPGot90QDilSo1KlLImoSBReqDp0MQbrdB_83oSTRtDnlvSlJX1uSQMmiV9_TVsl</recordid><startdate>20170108</startdate><enddate>20170108</enddate><creator>Mejia, Jose</creator><creator>Mederos, Boris</creator><creator>Avelar-Sosa, Liliana</creator><creator>Ortega Maynez, Leticia</creator><general>Modern Education and Computer Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170108</creationdate><title>Super Resolution of PET Images using Hybrid Regularization</title><author>Mejia, Jose ; Mederos, Boris ; Avelar-Sosa, Liliana ; Ortega Maynez, Leticia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1131-87a5fb7030e5f932d5d08da87509f3ee3510bc6fda865d3ee4a2ce15af20ec123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mejia, Jose</creatorcontrib><creatorcontrib>Mederos, Boris</creatorcontrib><creatorcontrib>Avelar-Sosa, Liliana</creatorcontrib><creatorcontrib>Ortega Maynez, Leticia</creatorcontrib><creatorcontrib>UACJ/Department of electrical and computation, Juarez, Mexico</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of image, graphics and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mejia, Jose</au><au>Mederos, Boris</au><au>Avelar-Sosa, Liliana</au><au>Ortega Maynez, Leticia</au><aucorp>UACJ/Department of electrical and computation, Juarez, Mexico</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super Resolution of PET Images using Hybrid Regularization</atitle><jtitle>International journal of image, graphics and signal processing</jtitle><date>2017-01-08</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2074-9074</issn><eissn>2074-9082</eissn><abstract>Positron emission tomography images are used to diagnose, staggering, and monitoring several diseases like cancer and Alzheimer, also, this technique is used in clinical research to help to assess the therapeutic and toxic effects of drugs. However, a main drawback of this modality is the poor spatial resolution due to limiting factors such as positron range, instrumentation limits and the allowable doses of radiotracer for administration to patients. These factors also lead to low signal to noise ratios in the images. In this paper, we proposed to increment the resolution of the image and reduce noise by implementing a super resolution scheme, we proposed to use a hybrid regularization consisting of a TV term plus a Tikhonov term to solve the problem of low resolution and heavy noise. By using an anatomical driven scheme to balance between regularization terms we attain a better resolution image with preservation of small structures like lesions and reduced noise without blurring the edges of images. Experimental results and comparisons with other methods of the state-of-the-art show that our proposed scheme produces better preservation of details without adding artifacts when the resolution factor is increased.</abstract><cop>Hong Kong</cop><pub>Modern Education and Computer Science Press</pub><doi>10.5815/ijigsp.2017.01.01</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2074-9074
ispartof International journal of image, graphics and signal processing, 2017-01, Vol.9 (1), p.1-9
issn 2074-9074
2074-9082
language eng
recordid cdi_proquest_journals_1886765554
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Super Resolution of PET Images using Hybrid Regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20Resolution%20of%20PET%20Images%20using%20Hybrid%20Regularization&rft.jtitle=International%20journal%20of%20image,%20graphics%20and%20signal%20processing&rft.au=Mejia,%20Jose&rft.aucorp=UACJ/Department%20of%20electrical%20and%20computation,%20Juarez,%20Mexico&rft.date=2017-01-08&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2074-9074&rft.eissn=2074-9082&rft_id=info:doi/10.5815/ijigsp.2017.01.01&rft_dat=%3Cproquest_cross%3E4321640997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886765554&rft_id=info:pmid/&rfr_iscdi=true