High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces
Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2017-04, Vol.10 (7), p.1517 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1517 |
container_title | ChemSusChem |
container_volume | 10 |
creator | Ezbiri, M Becattini, V Hoes, M Michalsky, R Steinfeld, A |
description | Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non-stoichiometry of La0.2Sr0.8Mn0.8Al0.2O3-[delta] increases with the strontium content and reaches a maximum of [delta]=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-xSrxMn1-yAlyO3-[delta] compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction. |
doi_str_mv | 10.1002/cssc.201601869 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1886197654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321599255</sourcerecordid><originalsourceid>FETCH-LOGICAL-g150t-73aa5e09258b8357727e434c6fa99c915ae55aa0b74818055513c6471dd32ee33</originalsourceid><addsrcrecordid>eNo9jU1LwzAAQIMoOKdXzwHPmfn-OI46N2Gj4hQEkZGl6dZZmppkMv-9A8XTe6f3ALgmeEQwprcuJTeimEhMtDQnYHAER0Ly19N_Z-QcXKS0w1hiI-UAxFmz2cInX4UDLGxvXZO_YajhuEV3ofcVnFuCDst4WHQlQ2-Vb7N9h48-hq_00WSfYB0iXPZtk3PTbWBRUmi7Cs5oCW2Giw5Nuti47bG03MfaOp8uwVlt2-Sv_jgEL_eT52KG5uX0oRjP0YYInJFi1gqPDRV6rZlQiirPGXeytsY4Q4T1QliL14prorEQgjAnuSJVxaj3jA3BzW-3j-Fz71Ne7cI-dsflimgtiVFScPYDDkhaYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886197654</pqid></control><display><type>article</type><title>High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces</title><source>Access via Wiley Online Library</source><creator>Ezbiri, M ; Becattini, V ; Hoes, M ; Michalsky, R ; Steinfeld, A</creator><creatorcontrib>Ezbiri, M ; Becattini, V ; Hoes, M ; Michalsky, R ; Steinfeld, A</creatorcontrib><description>Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non-stoichiometry of La0.2Sr0.8Mn0.8Al0.2O3-[delta] increases with the strontium content and reaches a maximum of [delta]=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-xSrxMn1-yAlyO3-[delta] compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201601869</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><ispartof>ChemSusChem, 2017-04, Vol.10 (7), p.1517</ispartof><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Ezbiri, M</creatorcontrib><creatorcontrib>Becattini, V</creatorcontrib><creatorcontrib>Hoes, M</creatorcontrib><creatorcontrib>Michalsky, R</creatorcontrib><creatorcontrib>Steinfeld, A</creatorcontrib><title>High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces</title><title>ChemSusChem</title><description>Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non-stoichiometry of La0.2Sr0.8Mn0.8Al0.2O3-[delta] increases with the strontium content and reaches a maximum of [delta]=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-xSrxMn1-yAlyO3-[delta] compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction.</description><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9jU1LwzAAQIMoOKdXzwHPmfn-OI46N2Gj4hQEkZGl6dZZmppkMv-9A8XTe6f3ALgmeEQwprcuJTeimEhMtDQnYHAER0Ly19N_Z-QcXKS0w1hiI-UAxFmz2cInX4UDLGxvXZO_YajhuEV3ofcVnFuCDst4WHQlQ2-Vb7N9h48-hq_00WSfYB0iXPZtk3PTbWBRUmi7Cs5oCW2Giw5Nuti47bG03MfaOp8uwVlt2-Sv_jgEL_eT52KG5uX0oRjP0YYInJFi1gqPDRV6rZlQiirPGXeytsY4Q4T1QliL14prorEQgjAnuSJVxaj3jA3BzW-3j-Fz71Ne7cI-dsflimgtiVFScPYDDkhaYw</recordid><startdate>20170410</startdate><enddate>20170410</enddate><creator>Ezbiri, M</creator><creator>Becattini, V</creator><creator>Hoes, M</creator><creator>Michalsky, R</creator><creator>Steinfeld, A</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope></search><sort><creationdate>20170410</creationdate><title>High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces</title><author>Ezbiri, M ; Becattini, V ; Hoes, M ; Michalsky, R ; Steinfeld, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g150t-73aa5e09258b8357727e434c6fa99c915ae55aa0b74818055513c6471dd32ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezbiri, M</creatorcontrib><creatorcontrib>Becattini, V</creatorcontrib><creatorcontrib>Hoes, M</creatorcontrib><creatorcontrib>Michalsky, R</creatorcontrib><creatorcontrib>Steinfeld, A</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezbiri, M</au><au>Becattini, V</au><au>Hoes, M</au><au>Michalsky, R</au><au>Steinfeld, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces</atitle><jtitle>ChemSusChem</jtitle><date>2017-04-10</date><risdate>2017</risdate><volume>10</volume><issue>7</issue><spage>1517</spage><pages>1517-</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non-stoichiometry of La0.2Sr0.8Mn0.8Al0.2O3-[delta] increases with the strontium content and reaches a maximum of [delta]=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-xSrxMn1-yAlyO3-[delta] compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.201601869</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2017-04, Vol.10 (7), p.1517 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_journals_1886197654 |
source | Access via Wiley Online Library |
title | High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T01%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Redox%20Capacity%20of%20Al-Doped%20La1-xSrxMnO3-%5Bdelta%5D%20Perovskites%20for%20Splitting%20CO2%20and%20H2O%20at%20Mn-Enriched%20Surfaces&rft.jtitle=ChemSusChem&rft.au=Ezbiri,%20M&rft.date=2017-04-10&rft.volume=10&rft.issue=7&rft.spage=1517&rft.pages=1517-&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201601869&rft_dat=%3Cproquest%3E4321599255%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886197654&rft_id=info:pmid/&rfr_iscdi=true |