High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces

Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2017-04, Vol.10 (7), p.1517
Hauptverfasser: Ezbiri, M, Becattini, V, Hoes, M, Michalsky, R, Steinfeld, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1517
container_title ChemSusChem
container_volume 10
creator Ezbiri, M
Becattini, V
Hoes, M
Michalsky, R
Steinfeld, A
description Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non-stoichiometry of La0.2Sr0.8Mn0.8Al0.2O3-[delta] increases with the strontium content and reaches a maximum of [delta]=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-xSrxMn1-yAlyO3-[delta] compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction.
doi_str_mv 10.1002/cssc.201601869
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1886197654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321599255</sourcerecordid><originalsourceid>FETCH-LOGICAL-g150t-73aa5e09258b8357727e434c6fa99c915ae55aa0b74818055513c6471dd32ee33</originalsourceid><addsrcrecordid>eNo9jU1LwzAAQIMoOKdXzwHPmfn-OI46N2Gj4hQEkZGl6dZZmppkMv-9A8XTe6f3ALgmeEQwprcuJTeimEhMtDQnYHAER0Ly19N_Z-QcXKS0w1hiI-UAxFmz2cInX4UDLGxvXZO_YajhuEV3ofcVnFuCDst4WHQlQ2-Vb7N9h48-hq_00WSfYB0iXPZtk3PTbWBRUmi7Cs5oCW2Giw5Nuti47bG03MfaOp8uwVlt2-Sv_jgEL_eT52KG5uX0oRjP0YYInJFi1gqPDRV6rZlQiirPGXeytsY4Q4T1QliL14prorEQgjAnuSJVxaj3jA3BzW-3j-Fz71Ne7cI-dsflimgtiVFScPYDDkhaYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886197654</pqid></control><display><type>article</type><title>High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces</title><source>Access via Wiley Online Library</source><creator>Ezbiri, M ; Becattini, V ; Hoes, M ; Michalsky, R ; Steinfeld, A</creator><creatorcontrib>Ezbiri, M ; Becattini, V ; Hoes, M ; Michalsky, R ; Steinfeld, A</creatorcontrib><description>Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non-stoichiometry of La0.2Sr0.8Mn0.8Al0.2O3-[delta] increases with the strontium content and reaches a maximum of [delta]=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-xSrxMn1-yAlyO3-[delta] compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201601869</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><ispartof>ChemSusChem, 2017-04, Vol.10 (7), p.1517</ispartof><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Ezbiri, M</creatorcontrib><creatorcontrib>Becattini, V</creatorcontrib><creatorcontrib>Hoes, M</creatorcontrib><creatorcontrib>Michalsky, R</creatorcontrib><creatorcontrib>Steinfeld, A</creatorcontrib><title>High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces</title><title>ChemSusChem</title><description>Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non-stoichiometry of La0.2Sr0.8Mn0.8Al0.2O3-[delta] increases with the strontium content and reaches a maximum of [delta]=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-xSrxMn1-yAlyO3-[delta] compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction.</description><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9jU1LwzAAQIMoOKdXzwHPmfn-OI46N2Gj4hQEkZGl6dZZmppkMv-9A8XTe6f3ALgmeEQwprcuJTeimEhMtDQnYHAER0Ly19N_Z-QcXKS0w1hiI-UAxFmz2cInX4UDLGxvXZO_YajhuEV3ofcVnFuCDst4WHQlQ2-Vb7N9h48-hq_00WSfYB0iXPZtk3PTbWBRUmi7Cs5oCW2Giw5Nuti47bG03MfaOp8uwVlt2-Sv_jgEL_eT52KG5uX0oRjP0YYInJFi1gqPDRV6rZlQiirPGXeytsY4Q4T1QliL14prorEQgjAnuSJVxaj3jA3BzW-3j-Fz71Ne7cI-dsflimgtiVFScPYDDkhaYw</recordid><startdate>20170410</startdate><enddate>20170410</enddate><creator>Ezbiri, M</creator><creator>Becattini, V</creator><creator>Hoes, M</creator><creator>Michalsky, R</creator><creator>Steinfeld, A</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope></search><sort><creationdate>20170410</creationdate><title>High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces</title><author>Ezbiri, M ; Becattini, V ; Hoes, M ; Michalsky, R ; Steinfeld, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g150t-73aa5e09258b8357727e434c6fa99c915ae55aa0b74818055513c6471dd32ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezbiri, M</creatorcontrib><creatorcontrib>Becattini, V</creatorcontrib><creatorcontrib>Hoes, M</creatorcontrib><creatorcontrib>Michalsky, R</creatorcontrib><creatorcontrib>Steinfeld, A</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezbiri, M</au><au>Becattini, V</au><au>Hoes, M</au><au>Michalsky, R</au><au>Steinfeld, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces</atitle><jtitle>ChemSusChem</jtitle><date>2017-04-10</date><risdate>2017</risdate><volume>10</volume><issue>7</issue><spage>1517</spage><pages>1517-</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2O into CO and H2 (syngas) and O2. This work investigates the surface activity of La1-xSrxMn1-yAlyO3-[delta] (0≤x≤1, 0≤y≤1) and La0.6Ca0.4Mn0.6Al0.4O3-[delta]. At 1623K and 15mbar O2, the oxygen non-stoichiometry of La0.2Sr0.8Mn0.8Al0.2O3-[delta] increases with the strontium content and reaches a maximum of [delta]=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-xSrxMn1-yAlyO3-[delta] compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.201601869</doi></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2017-04, Vol.10 (7), p.1517
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_journals_1886197654
source Access via Wiley Online Library
title High Redox Capacity of Al-Doped La1-xSrxMnO3-[delta] Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T01%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Redox%20Capacity%20of%20Al-Doped%20La1-xSrxMnO3-%5Bdelta%5D%20Perovskites%20for%20Splitting%20CO2%20and%20H2O%20at%20Mn-Enriched%20Surfaces&rft.jtitle=ChemSusChem&rft.au=Ezbiri,%20M&rft.date=2017-04-10&rft.volume=10&rft.issue=7&rft.spage=1517&rft.pages=1517-&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201601869&rft_dat=%3Cproquest%3E4321599255%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886197654&rft_id=info:pmid/&rfr_iscdi=true