A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach
•An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are per...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2017-06, Vol.82, p.126-138 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | |
container_start_page | 126 |
container_title | Computers & operations research |
container_volume | 82 |
creator | D’Ambrosio, Antonio Mazzeo, Giulio Iorio, Carmela Siciliano, Roberta |
description | •An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are performed.
In recent years the analysis of preference rankings has become an increasingly important topic. One of the most important tasks in dealing with preference rankings is the identification of the median ranking, namely that ranking that best represents the preferences of a population of judges. This task is known with several alternative names, such as rank aggregation problem, consensus ranking problem, social choice problem. In this paper we propose a Differential Evolution algorithm for the Consensus Ranking detection (DECoR) within the Kemeny’s axiomatic framework. The algorithm works with full, partial and incomplete rankings. A simulation study shows that our proposal is particularly feasible when working with a very large number of objects to be ranked, because it is accurate and also faster than other proposals. Some applications on real data sets show the practical utility of our proposal in helping the users in taking decisions. |
doi_str_mv | 10.1016/j.cor.2017.01.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1885749565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054817300230</els_id><sourcerecordid>4321569201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c2008821b86f01c569a2ee651418b1289f11259ef77e51bc8d942ec48a29e363</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg_fgB3gKet2aym00WT6X4hQUvPXgLaXbSpnaTmt2K_fem1rPDg4GZ9-YNj5AbYGNgUN-txzamMWcgxwwy5AkZgZJlIWvxfkpGrGSiYKJS5-Si79csl-QwIjihrXcOE4bBmw3Fr7jZDT4GajbLmPyw6qiLiTofWh-WdFgh7bD1JtBkwsdhtAstpt_FK3YY9tR8-9iZwVtqttsUjV1dkTNnNj1e__VLMn98mE-fi9nb08t0MitsKeqhsJwxpTgsVO0YWFE3hiPWAipQC-CqcQBcNOikRAELq9qm4mgrZXiDZV1ektvj2ez6ucN-0Ou4SyE7alBKyKoRtcgsOLJsin2f0Olt8p1Jew1MH8LUa53D1IcwNYMMmTX3Rw3m7788Jt1bj8HmJBLaQbfR_6P-AVnvfSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885749565</pqid></control><display><type>article</type><title>A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach</title><source>Access via ScienceDirect (Elsevier)</source><creator>D’Ambrosio, Antonio ; Mazzeo, Giulio ; Iorio, Carmela ; Siciliano, Roberta</creator><creatorcontrib>D’Ambrosio, Antonio ; Mazzeo, Giulio ; Iorio, Carmela ; Siciliano, Roberta</creatorcontrib><description>•An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are performed.
In recent years the analysis of preference rankings has become an increasingly important topic. One of the most important tasks in dealing with preference rankings is the identification of the median ranking, namely that ranking that best represents the preferences of a population of judges. This task is known with several alternative names, such as rank aggregation problem, consensus ranking problem, social choice problem. In this paper we propose a Differential Evolution algorithm for the Consensus Ranking detection (DECoR) within the Kemeny’s axiomatic framework. The algorithm works with full, partial and incomplete rankings. A simulation study shows that our proposal is particularly feasible when working with a very large number of objects to be ranked, because it is accurate and also faster than other proposals. Some applications on real data sets show the practical utility of our proposal in helping the users in taking decisions.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2017.01.017</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Consensus Ranking ; Differential evolution ; Heuristics ; Kemeny distance ; Median ; Median ranking ; Optimization techniques ; Preferences ; Rank aggregation ; Ratings & rankings ; Studies</subject><ispartof>Computers & operations research, 2017-06, Vol.82, p.126-138</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c2008821b86f01c569a2ee651418b1289f11259ef77e51bc8d942ec48a29e363</citedby><cites>FETCH-LOGICAL-c356t-c2008821b86f01c569a2ee651418b1289f11259ef77e51bc8d942ec48a29e363</cites><orcidid>0000-0002-1905-037X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2017.01.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Mazzeo, Giulio</creatorcontrib><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><title>A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach</title><title>Computers & operations research</title><description>•An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are performed.
In recent years the analysis of preference rankings has become an increasingly important topic. One of the most important tasks in dealing with preference rankings is the identification of the median ranking, namely that ranking that best represents the preferences of a population of judges. This task is known with several alternative names, such as rank aggregation problem, consensus ranking problem, social choice problem. In this paper we propose a Differential Evolution algorithm for the Consensus Ranking detection (DECoR) within the Kemeny’s axiomatic framework. The algorithm works with full, partial and incomplete rankings. A simulation study shows that our proposal is particularly feasible when working with a very large number of objects to be ranked, because it is accurate and also faster than other proposals. Some applications on real data sets show the practical utility of our proposal in helping the users in taking decisions.</description><subject>Algorithms</subject><subject>Consensus Ranking</subject><subject>Differential evolution</subject><subject>Heuristics</subject><subject>Kemeny distance</subject><subject>Median</subject><subject>Median ranking</subject><subject>Optimization techniques</subject><subject>Preferences</subject><subject>Rank aggregation</subject><subject>Ratings & rankings</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJg_fgB3gKet2aym00WT6X4hQUvPXgLaXbSpnaTmt2K_fem1rPDg4GZ9-YNj5AbYGNgUN-txzamMWcgxwwy5AkZgZJlIWvxfkpGrGSiYKJS5-Si79csl-QwIjihrXcOE4bBmw3Fr7jZDT4GajbLmPyw6qiLiTofWh-WdFgh7bD1JtBkwsdhtAstpt_FK3YY9tR8-9iZwVtqttsUjV1dkTNnNj1e__VLMn98mE-fi9nb08t0MitsKeqhsJwxpTgsVO0YWFE3hiPWAipQC-CqcQBcNOikRAELq9qm4mgrZXiDZV1ektvj2ez6ucN-0Ou4SyE7alBKyKoRtcgsOLJsin2f0Olt8p1Jew1MH8LUa53D1IcwNYMMmTX3Rw3m7788Jt1bj8HmJBLaQbfR_6P-AVnvfSY</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>D’Ambrosio, Antonio</creator><creator>Mazzeo, Giulio</creator><creator>Iorio, Carmela</creator><creator>Siciliano, Roberta</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid></search><sort><creationdate>20170601</creationdate><title>A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach</title><author>D’Ambrosio, Antonio ; Mazzeo, Giulio ; Iorio, Carmela ; Siciliano, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c2008821b86f01c569a2ee651418b1289f11259ef77e51bc8d942ec48a29e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Consensus Ranking</topic><topic>Differential evolution</topic><topic>Heuristics</topic><topic>Kemeny distance</topic><topic>Median</topic><topic>Median ranking</topic><topic>Optimization techniques</topic><topic>Preferences</topic><topic>Rank aggregation</topic><topic>Ratings & rankings</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Mazzeo, Giulio</creatorcontrib><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Ambrosio, Antonio</au><au>Mazzeo, Giulio</au><au>Iorio, Carmela</au><au>Siciliano, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach</atitle><jtitle>Computers & operations research</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>82</volume><spage>126</spage><epage>138</epage><pages>126-138</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>•An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are performed.
In recent years the analysis of preference rankings has become an increasingly important topic. One of the most important tasks in dealing with preference rankings is the identification of the median ranking, namely that ranking that best represents the preferences of a population of judges. This task is known with several alternative names, such as rank aggregation problem, consensus ranking problem, social choice problem. In this paper we propose a Differential Evolution algorithm for the Consensus Ranking detection (DECoR) within the Kemeny’s axiomatic framework. The algorithm works with full, partial and incomplete rankings. A simulation study shows that our proposal is particularly feasible when working with a very large number of objects to be ranked, because it is accurate and also faster than other proposals. Some applications on real data sets show the practical utility of our proposal in helping the users in taking decisions.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2017.01.017</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2017-06, Vol.82, p.126-138 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_journals_1885749565 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Consensus Ranking Differential evolution Heuristics Kemeny distance Median Median ranking Optimization techniques Preferences Rank aggregation Ratings & rankings Studies |
title | A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20differential%20evolution%20algorithm%20for%20finding%20the%20median%20ranking%20under%20the%20Kemeny%20axiomatic%20approach&rft.jtitle=Computers%20&%20operations%20research&rft.au=D%E2%80%99Ambrosio,%20Antonio&rft.date=2017-06-01&rft.volume=82&rft.spage=126&rft.epage=138&rft.pages=126-138&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2017.01.017&rft_dat=%3Cproquest_cross%3E4321569201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885749565&rft_id=info:pmid/&rft_els_id=S0305054817300230&rfr_iscdi=true |