A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach

•An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2017-06, Vol.82, p.126-138
Hauptverfasser: D’Ambrosio, Antonio, Mazzeo, Giulio, Iorio, Carmela, Siciliano, Roberta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue
container_start_page 126
container_title Computers & operations research
container_volume 82
creator D’Ambrosio, Antonio
Mazzeo, Giulio
Iorio, Carmela
Siciliano, Roberta
description •An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are performed. In recent years the analysis of preference rankings has become an increasingly important topic. One of the most important tasks in dealing with preference rankings is the identification of the median ranking, namely that ranking that best represents the preferences of a population of judges. This task is known with several alternative names, such as rank aggregation problem, consensus ranking problem, social choice problem. In this paper we propose a Differential Evolution algorithm for the Consensus Ranking detection (DECoR) within the Kemeny’s axiomatic framework. The algorithm works with full, partial and incomplete rankings. A simulation study shows that our proposal is particularly feasible when working with a very large number of objects to be ranked, because it is accurate and also faster than other proposals. Some applications on real data sets show the practical utility of our proposal in helping the users in taking decisions.
doi_str_mv 10.1016/j.cor.2017.01.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1885749565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054817300230</els_id><sourcerecordid>4321569201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c2008821b86f01c569a2ee651418b1289f11259ef77e51bc8d942ec48a29e363</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg_fgB3gKet2aym00WT6X4hQUvPXgLaXbSpnaTmt2K_fem1rPDg4GZ9-YNj5AbYGNgUN-txzamMWcgxwwy5AkZgZJlIWvxfkpGrGSiYKJS5-Si79csl-QwIjihrXcOE4bBmw3Fr7jZDT4GajbLmPyw6qiLiTofWh-WdFgh7bD1JtBkwsdhtAstpt_FK3YY9tR8-9iZwVtqttsUjV1dkTNnNj1e__VLMn98mE-fi9nb08t0MitsKeqhsJwxpTgsVO0YWFE3hiPWAipQC-CqcQBcNOikRAELq9qm4mgrZXiDZV1ektvj2ez6ucN-0Ou4SyE7alBKyKoRtcgsOLJsin2f0Olt8p1Jew1MH8LUa53D1IcwNYMMmTX3Rw3m7788Jt1bj8HmJBLaQbfR_6P-AVnvfSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885749565</pqid></control><display><type>article</type><title>A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach</title><source>Access via ScienceDirect (Elsevier)</source><creator>D’Ambrosio, Antonio ; Mazzeo, Giulio ; Iorio, Carmela ; Siciliano, Roberta</creator><creatorcontrib>D’Ambrosio, Antonio ; Mazzeo, Giulio ; Iorio, Carmela ; Siciliano, Roberta</creatorcontrib><description>•An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are performed. In recent years the analysis of preference rankings has become an increasingly important topic. One of the most important tasks in dealing with preference rankings is the identification of the median ranking, namely that ranking that best represents the preferences of a population of judges. This task is known with several alternative names, such as rank aggregation problem, consensus ranking problem, social choice problem. In this paper we propose a Differential Evolution algorithm for the Consensus Ranking detection (DECoR) within the Kemeny’s axiomatic framework. The algorithm works with full, partial and incomplete rankings. A simulation study shows that our proposal is particularly feasible when working with a very large number of objects to be ranked, because it is accurate and also faster than other proposals. Some applications on real data sets show the practical utility of our proposal in helping the users in taking decisions.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2017.01.017</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Consensus Ranking ; Differential evolution ; Heuristics ; Kemeny distance ; Median ; Median ranking ; Optimization techniques ; Preferences ; Rank aggregation ; Ratings &amp; rankings ; Studies</subject><ispartof>Computers &amp; operations research, 2017-06, Vol.82, p.126-138</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c2008821b86f01c569a2ee651418b1289f11259ef77e51bc8d942ec48a29e363</citedby><cites>FETCH-LOGICAL-c356t-c2008821b86f01c569a2ee651418b1289f11259ef77e51bc8d942ec48a29e363</cites><orcidid>0000-0002-1905-037X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2017.01.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Mazzeo, Giulio</creatorcontrib><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><title>A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach</title><title>Computers &amp; operations research</title><description>•An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are performed. In recent years the analysis of preference rankings has become an increasingly important topic. One of the most important tasks in dealing with preference rankings is the identification of the median ranking, namely that ranking that best represents the preferences of a population of judges. This task is known with several alternative names, such as rank aggregation problem, consensus ranking problem, social choice problem. In this paper we propose a Differential Evolution algorithm for the Consensus Ranking detection (DECoR) within the Kemeny’s axiomatic framework. The algorithm works with full, partial and incomplete rankings. A simulation study shows that our proposal is particularly feasible when working with a very large number of objects to be ranked, because it is accurate and also faster than other proposals. Some applications on real data sets show the practical utility of our proposal in helping the users in taking decisions.</description><subject>Algorithms</subject><subject>Consensus Ranking</subject><subject>Differential evolution</subject><subject>Heuristics</subject><subject>Kemeny distance</subject><subject>Median</subject><subject>Median ranking</subject><subject>Optimization techniques</subject><subject>Preferences</subject><subject>Rank aggregation</subject><subject>Ratings &amp; rankings</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJg_fgB3gKet2aym00WT6X4hQUvPXgLaXbSpnaTmt2K_fem1rPDg4GZ9-YNj5AbYGNgUN-txzamMWcgxwwy5AkZgZJlIWvxfkpGrGSiYKJS5-Si79csl-QwIjihrXcOE4bBmw3Fr7jZDT4GajbLmPyw6qiLiTofWh-WdFgh7bD1JtBkwsdhtAstpt_FK3YY9tR8-9iZwVtqttsUjV1dkTNnNj1e__VLMn98mE-fi9nb08t0MitsKeqhsJwxpTgsVO0YWFE3hiPWAipQC-CqcQBcNOikRAELq9qm4mgrZXiDZV1ektvj2ez6ucN-0Ou4SyE7alBKyKoRtcgsOLJsin2f0Olt8p1Jew1MH8LUa53D1IcwNYMMmTX3Rw3m7788Jt1bj8HmJBLaQbfR_6P-AVnvfSY</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>D’Ambrosio, Antonio</creator><creator>Mazzeo, Giulio</creator><creator>Iorio, Carmela</creator><creator>Siciliano, Roberta</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid></search><sort><creationdate>20170601</creationdate><title>A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach</title><author>D’Ambrosio, Antonio ; Mazzeo, Giulio ; Iorio, Carmela ; Siciliano, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c2008821b86f01c569a2ee651418b1289f11259ef77e51bc8d942ec48a29e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Consensus Ranking</topic><topic>Differential evolution</topic><topic>Heuristics</topic><topic>Kemeny distance</topic><topic>Median</topic><topic>Median ranking</topic><topic>Optimization techniques</topic><topic>Preferences</topic><topic>Rank aggregation</topic><topic>Ratings &amp; rankings</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Mazzeo, Giulio</creatorcontrib><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Ambrosio, Antonio</au><au>Mazzeo, Giulio</au><au>Iorio, Carmela</au><au>Siciliano, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach</atitle><jtitle>Computers &amp; operations research</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>82</volume><spage>126</spage><epage>138</epage><pages>126-138</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>•An accurate (meta)heuristic solution to the rank aggregation problem is proposed.•The reference paradigm is the Kemeny–Snell axiomatic framework.•We specifically adapt the differential evolution algorithm to deal with the median ranking problem.•Simulation studies and real data applications are performed. In recent years the analysis of preference rankings has become an increasingly important topic. One of the most important tasks in dealing with preference rankings is the identification of the median ranking, namely that ranking that best represents the preferences of a population of judges. This task is known with several alternative names, such as rank aggregation problem, consensus ranking problem, social choice problem. In this paper we propose a Differential Evolution algorithm for the Consensus Ranking detection (DECoR) within the Kemeny’s axiomatic framework. The algorithm works with full, partial and incomplete rankings. A simulation study shows that our proposal is particularly feasible when working with a very large number of objects to be ranked, because it is accurate and also faster than other proposals. Some applications on real data sets show the practical utility of our proposal in helping the users in taking decisions.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2017.01.017</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2017-06, Vol.82, p.126-138
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_1885749565
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Consensus Ranking
Differential evolution
Heuristics
Kemeny distance
Median
Median ranking
Optimization techniques
Preferences
Rank aggregation
Ratings & rankings
Studies
title A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20differential%20evolution%20algorithm%20for%20finding%20the%20median%20ranking%20under%20the%20Kemeny%20axiomatic%20approach&rft.jtitle=Computers%20&%20operations%20research&rft.au=D%E2%80%99Ambrosio,%20Antonio&rft.date=2017-06-01&rft.volume=82&rft.spage=126&rft.epage=138&rft.pages=126-138&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2017.01.017&rft_dat=%3Cproquest_cross%3E4321569201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885749565&rft_id=info:pmid/&rft_els_id=S0305054817300230&rfr_iscdi=true