Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features
The rapid growth in digital information has raised considerable challenges in particular when it comes to automated content analysis. Social media such as twitter share a lot of its users’ information about their events, opinions, personalities, etc. Paraphrase Identification (PI) is concerned with...
Gespeichert in:
Veröffentlicht in: | Information processing & management 2017-05, Vol.53 (3), p.640-652 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 3 |
container_start_page | 640 |
container_title | Information processing & management |
container_volume | 53 |
creator | AL-Smadi, Mohammad Jaradat, Zain AL-Ayyoub, Mahmoud Jararweh, Yaser |
description | The rapid growth in digital information has raised considerable challenges in particular when it comes to automated content analysis. Social media such as twitter share a lot of its users’ information about their events, opinions, personalities, etc. Paraphrase Identification (PI) is concerned with recognizing whether two texts have the same/similar meaning, whereas the Semantic Text Similarity (STS) is concerned with the degree of that similarity. This research proposes a state-of-the-art approach for paraphrase identification and semantic text similarity analysis in Arabic news tweets. The approach adopts several phases of text processing, features extraction and text classification. Lexical, syntactic, and semantic features are extracted to overcome the weakness and limitations of the current technologies in solving these tasks for the Arabic language. Maximum Entropy (MaxEnt) and Support Vector Regression (SVR) classifiers are trained using these features and are evaluated using a dataset prepared for this research. The experimentation results show that the approach achieves good results in comparison to the baseline results. |
doi_str_mv | 10.1016/j.ipm.2017.01.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1885709465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306457316302382</els_id><sourcerecordid>4321564771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2904ab4342eb71e793f50ef4c3431a8a316c41077fc165f648c1693f6745f9af3</originalsourceid><addsrcrecordid>eNp9kEFvEzEQhS0EEqHwA7hZ4trdzqzt9UacqqqFSpXaQzlbjjMGR5vd4HFo8gP437gKl156etLM955mnhCfEVoE7C82bdpt2w7QtoAtQPdGLHCwqjHK4luxAAV9o41V78UH5g0AaIPdQvx98NnvfmXPJNOappJiCr6keZJ-Wkumra-zIAsdiuS0TaPPqRzr0o9HTizTJC-zX1VkoieW5YmosNxzmn7KkQ41bDyXfJyKDzXn_GVqJF_2mfijeBf9yPTpv56JHzfXj1ffm7v7b7dXl3dNUJ0pTbcE7Vda6Y5WFskuVTRAUQelFfrBK-yDRrA2BuxN7PVQtUK91SYufVRn4sspd5fn33vi4jbzPtdX2OEwGAtL3ZtK4YkKeWbOFN0up63PR4fgntt2G1fbds9tO0BX266erycP1fP_JMqOQ6Ip0DplCsWt5_SK-x9gKomy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885709465</pqid></control><display><type>article</type><title>Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>AL-Smadi, Mohammad ; Jaradat, Zain ; AL-Ayyoub, Mahmoud ; Jararweh, Yaser</creator><creatorcontrib>AL-Smadi, Mohammad ; Jaradat, Zain ; AL-Ayyoub, Mahmoud ; Jararweh, Yaser</creatorcontrib><description>The rapid growth in digital information has raised considerable challenges in particular when it comes to automated content analysis. Social media such as twitter share a lot of its users’ information about their events, opinions, personalities, etc. Paraphrase Identification (PI) is concerned with recognizing whether two texts have the same/similar meaning, whereas the Semantic Text Similarity (STS) is concerned with the degree of that similarity. This research proposes a state-of-the-art approach for paraphrase identification and semantic text similarity analysis in Arabic news tweets. The approach adopts several phases of text processing, features extraction and text classification. Lexical, syntactic, and semantic features are extracted to overcome the weakness and limitations of the current technologies in solving these tasks for the Arabic language. Maximum Entropy (MaxEnt) and Support Vector Regression (SVR) classifiers are trained using these features and are evaluated using a dataset prepared for this research. The experimentation results show that the approach achieves good results in comparison to the baseline results.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2017.01.002</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Arabic language ; Content analysis ; Digital media ; Experimentation ; Feature extraction ; Maximum entropy ; Maximum entropy method ; Natural language processing ; News ; Paraphrase identification ; Regression analysis ; Semantic analysis ; Semantic text similarity ; Semantics ; Similarity ; Social networks ; Studies ; Support vector machines</subject><ispartof>Information processing & management, 2017-05, Vol.53 (3), p.640-652</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. May 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2904ab4342eb71e793f50ef4c3431a8a316c41077fc165f648c1693f6745f9af3</citedby><cites>FETCH-LOGICAL-c325t-2904ab4342eb71e793f50ef4c3431a8a316c41077fc165f648c1693f6745f9af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipm.2017.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>AL-Smadi, Mohammad</creatorcontrib><creatorcontrib>Jaradat, Zain</creatorcontrib><creatorcontrib>AL-Ayyoub, Mahmoud</creatorcontrib><creatorcontrib>Jararweh, Yaser</creatorcontrib><title>Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features</title><title>Information processing & management</title><description>The rapid growth in digital information has raised considerable challenges in particular when it comes to automated content analysis. Social media such as twitter share a lot of its users’ information about their events, opinions, personalities, etc. Paraphrase Identification (PI) is concerned with recognizing whether two texts have the same/similar meaning, whereas the Semantic Text Similarity (STS) is concerned with the degree of that similarity. This research proposes a state-of-the-art approach for paraphrase identification and semantic text similarity analysis in Arabic news tweets. The approach adopts several phases of text processing, features extraction and text classification. Lexical, syntactic, and semantic features are extracted to overcome the weakness and limitations of the current technologies in solving these tasks for the Arabic language. Maximum Entropy (MaxEnt) and Support Vector Regression (SVR) classifiers are trained using these features and are evaluated using a dataset prepared for this research. The experimentation results show that the approach achieves good results in comparison to the baseline results.</description><subject>Arabic language</subject><subject>Content analysis</subject><subject>Digital media</subject><subject>Experimentation</subject><subject>Feature extraction</subject><subject>Maximum entropy</subject><subject>Maximum entropy method</subject><subject>Natural language processing</subject><subject>News</subject><subject>Paraphrase identification</subject><subject>Regression analysis</subject><subject>Semantic analysis</subject><subject>Semantic text similarity</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Social networks</subject><subject>Studies</subject><subject>Support vector machines</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFvEzEQhS0EEqHwA7hZ4trdzqzt9UacqqqFSpXaQzlbjjMGR5vd4HFo8gP437gKl156etLM955mnhCfEVoE7C82bdpt2w7QtoAtQPdGLHCwqjHK4luxAAV9o41V78UH5g0AaIPdQvx98NnvfmXPJNOappJiCr6keZJ-Wkumra-zIAsdiuS0TaPPqRzr0o9HTizTJC-zX1VkoieW5YmosNxzmn7KkQ41bDyXfJyKDzXn_GVqJF_2mfijeBf9yPTpv56JHzfXj1ffm7v7b7dXl3dNUJ0pTbcE7Vda6Y5WFskuVTRAUQelFfrBK-yDRrA2BuxN7PVQtUK91SYufVRn4sspd5fn33vi4jbzPtdX2OEwGAtL3ZtK4YkKeWbOFN0up63PR4fgntt2G1fbds9tO0BX266erycP1fP_JMqOQ6Ip0DplCsWt5_SK-x9gKomy</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>AL-Smadi, Mohammad</creator><creator>Jaradat, Zain</creator><creator>AL-Ayyoub, Mahmoud</creator><creator>Jararweh, Yaser</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>201705</creationdate><title>Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features</title><author>AL-Smadi, Mohammad ; Jaradat, Zain ; AL-Ayyoub, Mahmoud ; Jararweh, Yaser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2904ab4342eb71e793f50ef4c3431a8a316c41077fc165f648c1693f6745f9af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arabic language</topic><topic>Content analysis</topic><topic>Digital media</topic><topic>Experimentation</topic><topic>Feature extraction</topic><topic>Maximum entropy</topic><topic>Maximum entropy method</topic><topic>Natural language processing</topic><topic>News</topic><topic>Paraphrase identification</topic><topic>Regression analysis</topic><topic>Semantic analysis</topic><topic>Semantic text similarity</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Social networks</topic><topic>Studies</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Smadi, Mohammad</creatorcontrib><creatorcontrib>Jaradat, Zain</creatorcontrib><creatorcontrib>AL-Ayyoub, Mahmoud</creatorcontrib><creatorcontrib>Jararweh, Yaser</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Information processing & management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Smadi, Mohammad</au><au>Jaradat, Zain</au><au>AL-Ayyoub, Mahmoud</au><au>Jararweh, Yaser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features</atitle><jtitle>Information processing & management</jtitle><date>2017-05</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>640</spage><epage>652</epage><pages>640-652</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>The rapid growth in digital information has raised considerable challenges in particular when it comes to automated content analysis. Social media such as twitter share a lot of its users’ information about their events, opinions, personalities, etc. Paraphrase Identification (PI) is concerned with recognizing whether two texts have the same/similar meaning, whereas the Semantic Text Similarity (STS) is concerned with the degree of that similarity. This research proposes a state-of-the-art approach for paraphrase identification and semantic text similarity analysis in Arabic news tweets. The approach adopts several phases of text processing, features extraction and text classification. Lexical, syntactic, and semantic features are extracted to overcome the weakness and limitations of the current technologies in solving these tasks for the Arabic language. Maximum Entropy (MaxEnt) and Support Vector Regression (SVR) classifiers are trained using these features and are evaluated using a dataset prepared for this research. The experimentation results show that the approach achieves good results in comparison to the baseline results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2017.01.002</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4573 |
ispartof | Information processing & management, 2017-05, Vol.53 (3), p.640-652 |
issn | 0306-4573 1873-5371 |
language | eng |
recordid | cdi_proquest_journals_1885709465 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Arabic language Content analysis Digital media Experimentation Feature extraction Maximum entropy Maximum entropy method Natural language processing News Paraphrase identification Regression analysis Semantic analysis Semantic text similarity Semantics Similarity Social networks Studies Support vector machines |
title | Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paraphrase%20identification%20and%20semantic%20text%20similarity%20analysis%20in%20Arabic%20news%20tweets%20using%20lexical,%20syntactic,%20and%20semantic%20features&rft.jtitle=Information%20processing%20&%20management&rft.au=AL-Smadi,%20Mohammad&rft.date=2017-05&rft.volume=53&rft.issue=3&rft.spage=640&rft.epage=652&rft.pages=640-652&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/j.ipm.2017.01.002&rft_dat=%3Cproquest_cross%3E4321564771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885709465&rft_id=info:pmid/&rft_els_id=S0306457316302382&rfr_iscdi=true |