Low-frequency dynamics in a shock-induced separated flow

The low-frequency unsteadiness in the direct numerical simulation of a Mach 2.9 shock wave/turbulent boundary layer interaction with mean flow separation is analysed using dynamic mode decomposition (DMD). The analysis is applied both to three-dimensional and spanwise-averaged snapshots of the flow....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-11, Vol.807, p.441-477
Hauptverfasser: Priebe, Stephan, Tu, Jonathan H., Rowley, Clarence W., Martín, M. Pino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue
container_start_page 441
container_title Journal of fluid mechanics
container_volume 807
creator Priebe, Stephan
Tu, Jonathan H.
Rowley, Clarence W.
Martín, M. Pino
description The low-frequency unsteadiness in the direct numerical simulation of a Mach 2.9 shock wave/turbulent boundary layer interaction with mean flow separation is analysed using dynamic mode decomposition (DMD). The analysis is applied both to three-dimensional and spanwise-averaged snapshots of the flow. The observed low-frequency DMD modes all share a common structure, characterized by perturbations along the shock, together with streamwise-elongated regions of low and high momentum that originate at the shock foot and extend into the downstream flow. A linear superposition of these modes, with dynamics governed by their corresponding DMD eigenvalues, accurately captures the unsteadiness of the shock. In addition, DMD analysis shows that the downstream regions of low and high momentum are unsteady and that their unsteadiness is linked to the unsteadiness of the shock. The observed flow structures in the downstream flow are reminiscent of Görtler-like vortices that are present in this type of flow due to an underlying centrifugal instability, suggesting a possible physical mechanism for the low-frequency unsteadiness in shock wave/turbulent boundary layer interactions.
doi_str_mv 10.1017/jfm.2016.557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884540866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_557</cupid><sourcerecordid>4321477041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a20ff9ef4dbba533e41ad2fcabc34a230596e3420b0438d763a77db124a44f4f3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f8CCV7NOPjbZPUrRKhS86DnM5kO3dndr0lL6701pDx48zcA8887wEHLLoGTA9MMy9CUHpsqq0mdkwqRqqFayOicTAM4pYxwuyVVKSwAmoNETUi_GHQ3R_2z9YPeF2w_YdzYV3VBgkb5G-027wW2td0Xya4y4yV1YjbtrchFwlfzNqU7Jx_PT--yFLt7mr7PHBbVCwoYihxAaH6RrW6yE8JKh48Fim-fIBVSN8kJyaEGK2mklUGvXMi5RyiCDmJK7Y-46jvnJtDHLcRuHfNKwupaVhFqpTN0fKRvHlKIPZh27HuPeMDAHNya7MQc3JrvJeHnCsW9j5z79n9T_Fn4Brd1lwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884540866</pqid></control><display><type>article</type><title>Low-frequency dynamics in a shock-induced separated flow</title><source>Cambridge University Press Journals Complete</source><creator>Priebe, Stephan ; Tu, Jonathan H. ; Rowley, Clarence W. ; Martín, M. Pino</creator><creatorcontrib>Priebe, Stephan ; Tu, Jonathan H. ; Rowley, Clarence W. ; Martín, M. Pino</creatorcontrib><description>The low-frequency unsteadiness in the direct numerical simulation of a Mach 2.9 shock wave/turbulent boundary layer interaction with mean flow separation is analysed using dynamic mode decomposition (DMD). The analysis is applied both to three-dimensional and spanwise-averaged snapshots of the flow. The observed low-frequency DMD modes all share a common structure, characterized by perturbations along the shock, together with streamwise-elongated regions of low and high momentum that originate at the shock foot and extend into the downstream flow. A linear superposition of these modes, with dynamics governed by their corresponding DMD eigenvalues, accurately captures the unsteadiness of the shock. In addition, DMD analysis shows that the downstream regions of low and high momentum are unsteady and that their unsteadiness is linked to the unsteadiness of the shock. The observed flow structures in the downstream flow are reminiscent of Görtler-like vortices that are present in this type of flow due to an underlying centrifugal instability, suggesting a possible physical mechanism for the low-frequency unsteadiness in shock wave/turbulent boundary layer interactions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.557</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer ; Boundary layers ; Flow separation ; Fluid dynamics ; Fluid mechanics ; Shock waves ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2016-11, Vol.807, p.441-477</ispartof><rights>2016 Cambridge University Press</rights><rights>2016 Cambridge University Press This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a20ff9ef4dbba533e41ad2fcabc34a230596e3420b0438d763a77db124a44f4f3</citedby><cites>FETCH-LOGICAL-c340t-a20ff9ef4dbba533e41ad2fcabc34a230596e3420b0438d763a77db124a44f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016005577/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,315,781,785,27926,27927,55630</link.rule.ids></links><search><creatorcontrib>Priebe, Stephan</creatorcontrib><creatorcontrib>Tu, Jonathan H.</creatorcontrib><creatorcontrib>Rowley, Clarence W.</creatorcontrib><creatorcontrib>Martín, M. Pino</creatorcontrib><title>Low-frequency dynamics in a shock-induced separated flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The low-frequency unsteadiness in the direct numerical simulation of a Mach 2.9 shock wave/turbulent boundary layer interaction with mean flow separation is analysed using dynamic mode decomposition (DMD). The analysis is applied both to three-dimensional and spanwise-averaged snapshots of the flow. The observed low-frequency DMD modes all share a common structure, characterized by perturbations along the shock, together with streamwise-elongated regions of low and high momentum that originate at the shock foot and extend into the downstream flow. A linear superposition of these modes, with dynamics governed by their corresponding DMD eigenvalues, accurately captures the unsteadiness of the shock. In addition, DMD analysis shows that the downstream regions of low and high momentum are unsteady and that their unsteadiness is linked to the unsteadiness of the shock. The observed flow structures in the downstream flow are reminiscent of Görtler-like vortices that are present in this type of flow due to an underlying centrifugal instability, suggesting a possible physical mechanism for the low-frequency unsteadiness in shock wave/turbulent boundary layer interactions.</description><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Flow separation</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Shock waves</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f8CCV7NOPjbZPUrRKhS86DnM5kO3dndr0lL6701pDx48zcA8887wEHLLoGTA9MMy9CUHpsqq0mdkwqRqqFayOicTAM4pYxwuyVVKSwAmoNETUi_GHQ3R_2z9YPeF2w_YdzYV3VBgkb5G-027wW2td0Xya4y4yV1YjbtrchFwlfzNqU7Jx_PT--yFLt7mr7PHBbVCwoYihxAaH6RrW6yE8JKh48Fim-fIBVSN8kJyaEGK2mklUGvXMi5RyiCDmJK7Y-46jvnJtDHLcRuHfNKwupaVhFqpTN0fKRvHlKIPZh27HuPeMDAHNya7MQc3JrvJeHnCsW9j5z79n9T_Fn4Brd1lwQ</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Priebe, Stephan</creator><creator>Tu, Jonathan H.</creator><creator>Rowley, Clarence W.</creator><creator>Martín, M. Pino</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20161125</creationdate><title>Low-frequency dynamics in a shock-induced separated flow</title><author>Priebe, Stephan ; Tu, Jonathan H. ; Rowley, Clarence W. ; Martín, M. Pino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a20ff9ef4dbba533e41ad2fcabc34a230596e3420b0438d763a77db124a44f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Flow separation</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Shock waves</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priebe, Stephan</creatorcontrib><creatorcontrib>Tu, Jonathan H.</creatorcontrib><creatorcontrib>Rowley, Clarence W.</creatorcontrib><creatorcontrib>Martín, M. Pino</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priebe, Stephan</au><au>Tu, Jonathan H.</au><au>Rowley, Clarence W.</au><au>Martín, M. Pino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-frequency dynamics in a shock-induced separated flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-11-25</date><risdate>2016</risdate><volume>807</volume><spage>441</spage><epage>477</epage><pages>441-477</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The low-frequency unsteadiness in the direct numerical simulation of a Mach 2.9 shock wave/turbulent boundary layer interaction with mean flow separation is analysed using dynamic mode decomposition (DMD). The analysis is applied both to three-dimensional and spanwise-averaged snapshots of the flow. The observed low-frequency DMD modes all share a common structure, characterized by perturbations along the shock, together with streamwise-elongated regions of low and high momentum that originate at the shock foot and extend into the downstream flow. A linear superposition of these modes, with dynamics governed by their corresponding DMD eigenvalues, accurately captures the unsteadiness of the shock. In addition, DMD analysis shows that the downstream regions of low and high momentum are unsteady and that their unsteadiness is linked to the unsteadiness of the shock. The observed flow structures in the downstream flow are reminiscent of Görtler-like vortices that are present in this type of flow due to an underlying centrifugal instability, suggesting a possible physical mechanism for the low-frequency unsteadiness in shock wave/turbulent boundary layer interactions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.557</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-11, Vol.807, p.441-477
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1884540866
source Cambridge University Press Journals Complete
subjects Boundary layer
Boundary layers
Flow separation
Fluid dynamics
Fluid mechanics
Shock waves
Turbulent flow
title Low-frequency dynamics in a shock-induced separated flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-frequency%20dynamics%20in%20a%20shock-induced%20separated%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Priebe,%20Stephan&rft.date=2016-11-25&rft.volume=807&rft.spage=441&rft.epage=477&rft.pages=441-477&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.557&rft_dat=%3Cproquest_cross%3E4321477041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884540866&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_557&rfr_iscdi=true