Wave energy absorption by a floating air bag
A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting pro...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2017-02, Vol.812, p.294-320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | |
container_start_page | 294 |
container_title | Journal of fluid mechanics |
container_volume | 812 |
creator | Kurniawan, A. Chaplin, J. R. Greaves, D. M. Hann, M. |
description | A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape. |
doi_str_mv | 10.1017/jfm.2016.811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884336182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_811</cupid><sourcerecordid>4321459627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6ba61520119ab01ce93f8480047c94257cb18df00d0567e9ed3edd0b22b0a1003</originalsourceid><addsrcrecordid>eNptkMFKxDAQhoMoWFdvPkDB67bOJGmaHmXRVVjwongMSZuUlm27Jl1h394suwcPnoaB7_9n-Ai5R8gRsHzs3ZBTQJFLxAuSIBdVVgpeXJIEgNIMkcI1uQmhB0AGVZmQ5Zf-sakdrW8PqTZh8ru5m8bUxC1120nP3dimuvOp0e0tuXJ6G-zdeS7I58vzx-o127yv31ZPm6xmHOZMGC2wiI9gpQ1gbSvmJJcAvKwrTouyNigbB9BAIUpb2YbZpgFDqQGNAGxBHk69Oz99722YVT_t_RhPKpSSMyZQ0kgtT1TtpxC8dWrnu0H7g0JQRx8q-lBHHyr6iHh-xvVgfNe09k_rf4Ff2x1fww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884336182</pqid></control><display><type>article</type><title>Wave energy absorption by a floating air bag</title><source>Cambridge University Press Journals Complete</source><creator>Kurniawan, A. ; Chaplin, J. R. ; Greaves, D. M. ; Hann, M.</creator><creatorcontrib>Kurniawan, A. ; Chaplin, J. R. ; Greaves, D. M. ; Hann, M.</creatorcontrib><description>A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.811</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Air bags ; Fluid mechanics ; Mathematical models ; Moisture absorption ; Turbines ; Wave action ; Wave energy ; Wave power</subject><ispartof>Journal of fluid mechanics, 2017-02, Vol.812, p.294-320</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6ba61520119ab01ce93f8480047c94257cb18df00d0567e9ed3edd0b22b0a1003</citedby><cites>FETCH-LOGICAL-c340t-6ba61520119ab01ce93f8480047c94257cb18df00d0567e9ed3edd0b22b0a1003</cites><orcidid>0000-0002-9176-3702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016008119/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Kurniawan, A.</creatorcontrib><creatorcontrib>Chaplin, J. R.</creatorcontrib><creatorcontrib>Greaves, D. M.</creatorcontrib><creatorcontrib>Hann, M.</creatorcontrib><title>Wave energy absorption by a floating air bag</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape.</description><subject>Air bags</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Moisture absorption</subject><subject>Turbines</subject><subject>Wave action</subject><subject>Wave energy</subject><subject>Wave power</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMFKxDAQhoMoWFdvPkDB67bOJGmaHmXRVVjwongMSZuUlm27Jl1h394suwcPnoaB7_9n-Ai5R8gRsHzs3ZBTQJFLxAuSIBdVVgpeXJIEgNIMkcI1uQmhB0AGVZmQ5Zf-sakdrW8PqTZh8ru5m8bUxC1120nP3dimuvOp0e0tuXJ6G-zdeS7I58vzx-o127yv31ZPm6xmHOZMGC2wiI9gpQ1gbSvmJJcAvKwrTouyNigbB9BAIUpb2YbZpgFDqQGNAGxBHk69Oz99722YVT_t_RhPKpSSMyZQ0kgtT1TtpxC8dWrnu0H7g0JQRx8q-lBHHyr6iHh-xvVgfNe09k_rf4Ff2x1fww</recordid><startdate>20170210</startdate><enddate>20170210</enddate><creator>Kurniawan, A.</creator><creator>Chaplin, J. R.</creator><creator>Greaves, D. M.</creator><creator>Hann, M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9176-3702</orcidid></search><sort><creationdate>20170210</creationdate><title>Wave energy absorption by a floating air bag</title><author>Kurniawan, A. ; Chaplin, J. R. ; Greaves, D. M. ; Hann, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6ba61520119ab01ce93f8480047c94257cb18df00d0567e9ed3edd0b22b0a1003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air bags</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Moisture absorption</topic><topic>Turbines</topic><topic>Wave action</topic><topic>Wave energy</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurniawan, A.</creatorcontrib><creatorcontrib>Chaplin, J. R.</creatorcontrib><creatorcontrib>Greaves, D. M.</creatorcontrib><creatorcontrib>Hann, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurniawan, A.</au><au>Chaplin, J. R.</au><au>Greaves, D. M.</au><au>Hann, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave energy absorption by a floating air bag</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-02-10</date><risdate>2017</risdate><volume>812</volume><spage>294</spage><epage>320</epage><pages>294-320</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.811</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9176-3702</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2017-02, Vol.812, p.294-320 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1884336182 |
source | Cambridge University Press Journals Complete |
subjects | Air bags Fluid mechanics Mathematical models Moisture absorption Turbines Wave action Wave energy Wave power |
title | Wave energy absorption by a floating air bag |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20energy%20absorption%20by%20a%20floating%20air%20bag&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Kurniawan,%20A.&rft.date=2017-02-10&rft.volume=812&rft.spage=294&rft.epage=320&rft.pages=294-320&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.811&rft_dat=%3Cproquest_cross%3E4321459627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884336182&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_811&rfr_iscdi=true |