Capillary breakup of a liquid bridge: identifying regimes and transitions

Computations of the breakup of a liquid bridge are used to establish the limits of applicability of similarity solutions derived for different breakup regimes. These regimes are based on particular viscous–inertial balances, that is, different limits of the Ohnesorge number $Oh$ . To accurately esta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-06, Vol.797, p.29-59
Hauptverfasser: Li, Yuan, Sprittles, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 29
container_title Journal of fluid mechanics
container_volume 797
creator Li, Yuan
Sprittles, James E.
description Computations of the breakup of a liquid bridge are used to establish the limits of applicability of similarity solutions derived for different breakup regimes. These regimes are based on particular viscous–inertial balances, that is, different limits of the Ohnesorge number $Oh$ . To accurately establish the transitions between regimes, the minimum bridge radius is resolved through four orders of magnitude using a purpose-built multiscale finite element method. This allows us to construct a quantitative phase diagram for the breakup phenomenon which includes the appearance of a recently discovered low- $Oh$ viscous regime. The method used to quantify the accuracy of the similarity solutions allows us to identify a number of previously unobserved features of the breakup, most notably an oscillatory convergence towards the viscous–inertial similarity solution. Finally, we discuss how the new findings open up a number of challenges for both theoretical and experimental analysis.
doi_str_mv 10.1017/jfm.2016.276
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884335717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_276</cupid><sourcerecordid>4321458891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-c85fa813dc7f12a3a602536eee7cd63ee4fb3cba076911e1c6e108f5a4030a4a3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMssZJwFzt2yoYqPipVYoHZcpNz5ZKv2snQf0-qdmBgOun03Ht6H8buEVIE1E8716QZoEozrS7YDKVaJFrJ_JLNALIsQczgmt3EuANAAQs9Y6ul7X1d23Dgm0D2Z-x557jltd-Pvpp2vtrSM_cVtYN3B99ueaCtbyhy21Z8CLaNfvBdG2_ZlbN1pLvznLPvt9ev5Uey_nxfLV_WSSkkDElZ5M4WKKpSO8yssAqyXCgi0mWlBJF0G1FuLGi1QCQsFSEULrcSBFhpxZw9nHL70O1HioPZdWNop5cGi0IKkWvUE_V4osrQxRjImT74ZqppEMxRlplkmaMsM8ma8PSM2-bU-U_qfwe_BapsQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884335717</pqid></control><display><type>article</type><title>Capillary breakup of a liquid bridge: identifying regimes and transitions</title><source>Cambridge University Press Journals Complete</source><creator>Li, Yuan ; Sprittles, James E.</creator><creatorcontrib>Li, Yuan ; Sprittles, James E.</creatorcontrib><description>Computations of the breakup of a liquid bridge are used to establish the limits of applicability of similarity solutions derived for different breakup regimes. These regimes are based on particular viscous–inertial balances, that is, different limits of the Ohnesorge number $Oh$ . To accurately establish the transitions between regimes, the minimum bridge radius is resolved through four orders of magnitude using a purpose-built multiscale finite element method. This allows us to construct a quantitative phase diagram for the breakup phenomenon which includes the appearance of a recently discovered low- $Oh$ viscous regime. The method used to quantify the accuracy of the similarity solutions allows us to identify a number of previously unobserved features of the breakup, most notably an oscillatory convergence towards the viscous–inertial similarity solution. Finally, we discuss how the new findings open up a number of challenges for both theoretical and experimental analysis.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.276</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fluid mechanics ; Inertia ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2016-06, Vol.797, p.29-59</ispartof><rights>2016 Cambridge University Press</rights><rights>2016 Cambridge University Press This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-c85fa813dc7f12a3a602536eee7cd63ee4fb3cba076911e1c6e108f5a4030a4a3</citedby><cites>FETCH-LOGICAL-c340t-c85fa813dc7f12a3a602536eee7cd63ee4fb3cba076911e1c6e108f5a4030a4a3</cites><orcidid>0000-0002-4169-6468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016002767/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Sprittles, James E.</creatorcontrib><title>Capillary breakup of a liquid bridge: identifying regimes and transitions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Computations of the breakup of a liquid bridge are used to establish the limits of applicability of similarity solutions derived for different breakup regimes. These regimes are based on particular viscous–inertial balances, that is, different limits of the Ohnesorge number $Oh$ . To accurately establish the transitions between regimes, the minimum bridge radius is resolved through four orders of magnitude using a purpose-built multiscale finite element method. This allows us to construct a quantitative phase diagram for the breakup phenomenon which includes the appearance of a recently discovered low- $Oh$ viscous regime. The method used to quantify the accuracy of the similarity solutions allows us to identify a number of previously unobserved features of the breakup, most notably an oscillatory convergence towards the viscous–inertial similarity solution. Finally, we discuss how the new findings open up a number of challenges for both theoretical and experimental analysis.</description><subject>Fluid mechanics</subject><subject>Inertia</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMssZJwFzt2yoYqPipVYoHZcpNz5ZKv2snQf0-qdmBgOun03Ht6H8buEVIE1E8716QZoEozrS7YDKVaJFrJ_JLNALIsQczgmt3EuANAAQs9Y6ul7X1d23Dgm0D2Z-x557jltd-Pvpp2vtrSM_cVtYN3B99ueaCtbyhy21Z8CLaNfvBdG2_ZlbN1pLvznLPvt9ev5Uey_nxfLV_WSSkkDElZ5M4WKKpSO8yssAqyXCgi0mWlBJF0G1FuLGi1QCQsFSEULrcSBFhpxZw9nHL70O1HioPZdWNop5cGi0IKkWvUE_V4osrQxRjImT74ZqppEMxRlplkmaMsM8ma8PSM2-bU-U_qfwe_BapsQQ</recordid><startdate>20160625</startdate><enddate>20160625</enddate><creator>Li, Yuan</creator><creator>Sprittles, James E.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4169-6468</orcidid></search><sort><creationdate>20160625</creationdate><title>Capillary breakup of a liquid bridge: identifying regimes and transitions</title><author>Li, Yuan ; Sprittles, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-c85fa813dc7f12a3a602536eee7cd63ee4fb3cba076911e1c6e108f5a4030a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fluid mechanics</topic><topic>Inertia</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Sprittles, James E.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuan</au><au>Sprittles, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary breakup of a liquid bridge: identifying regimes and transitions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-06-25</date><risdate>2016</risdate><volume>797</volume><spage>29</spage><epage>59</epage><pages>29-59</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Computations of the breakup of a liquid bridge are used to establish the limits of applicability of similarity solutions derived for different breakup regimes. These regimes are based on particular viscous–inertial balances, that is, different limits of the Ohnesorge number $Oh$ . To accurately establish the transitions between regimes, the minimum bridge radius is resolved through four orders of magnitude using a purpose-built multiscale finite element method. This allows us to construct a quantitative phase diagram for the breakup phenomenon which includes the appearance of a recently discovered low- $Oh$ viscous regime. The method used to quantify the accuracy of the similarity solutions allows us to identify a number of previously unobserved features of the breakup, most notably an oscillatory convergence towards the viscous–inertial similarity solution. Finally, we discuss how the new findings open up a number of challenges for both theoretical and experimental analysis.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.276</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-4169-6468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-06, Vol.797, p.29-59
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1884335717
source Cambridge University Press Journals Complete
subjects Fluid mechanics
Inertia
Viscosity
title Capillary breakup of a liquid bridge: identifying regimes and transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary%20breakup%20of%20a%20liquid%20bridge:%20identifying%20regimes%20and%20transitions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Li,%20Yuan&rft.date=2016-06-25&rft.volume=797&rft.spage=29&rft.epage=59&rft.pages=29-59&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.276&rft_dat=%3Cproquest_cross%3E4321458891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884335717&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_276&rfr_iscdi=true