Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects
Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solu...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2016-05, Vol.794, p.530-551 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | |
container_start_page | 530 |
container_title | Journal of fluid mechanics |
container_volume | 794 |
creator | Gibson, J. F. Schneider, T. M. |
description | Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift–Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar–turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the travelling wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium. |
doi_str_mv | 10.1017/jfm.2016.177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884333010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_177</cupid><sourcerecordid>4321458697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-23f87f00f0b6e05431bb681dc729af9d81fcdf1f2bb02d6f7b1fedaa2af6ccf03</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRsFZ3_oABt028d5JmEndS1AoFQXQ9zOuWtHnUTErRX29Cu3Dh6i7Od86Fj7FbhBgB5f2G6lgAZjFKecYmmGZFJLN0fs4mAEJEiAIu2VUIGwBMoJAT9r5s69ZWZVNaHhq9LZs1Lxu-q3Tj-aLd-773nKr28MCNb9wQz3jY-sPI6cZxGpq9j0L547kn8rYP1-yCdBX8zelO2efz08diGa3eXl4Xj6vIJiD6SCSUSwIgMJmHeZqgMVmOzkpRaCpcjmQdIQljQLiMpEHyTmuhKbOWIJmyu-Purmu_9j70atPuu2Z4qTDP0yRJAEdqdqRs14bQeVK7rqx1960Q1GhNDdbUaE0N1gY8PuG6Nl3p1v7P6n-FX4kAcAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884333010</pqid></control><display><type>article</type><title>Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects</title><source>Cambridge University Press Journals Complete</source><creator>Gibson, J. F. ; Schneider, T. M.</creator><creatorcontrib>Gibson, J. F. ; Schneider, T. M.</creatorcontrib><description>Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift–Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar–turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the travelling wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.177</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fluid mechanics ; Navier-Stokes equations ; Numerical analysis ; Reynolds number</subject><ispartof>Journal of fluid mechanics, 2016-05, Vol.794, p.530-551</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-23f87f00f0b6e05431bb681dc729af9d81fcdf1f2bb02d6f7b1fedaa2af6ccf03</citedby><cites>FETCH-LOGICAL-c302t-23f87f00f0b6e05431bb681dc729af9d81fcdf1f2bb02d6f7b1fedaa2af6ccf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016001774/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Gibson, J. F.</creatorcontrib><creatorcontrib>Schneider, T. M.</creatorcontrib><title>Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift–Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar–turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the travelling wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium.</description><subject>Fluid mechanics</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Reynolds number</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLw0AUhQdRsFZ3_oABt028d5JmEndS1AoFQXQ9zOuWtHnUTErRX29Cu3Dh6i7Od86Fj7FbhBgB5f2G6lgAZjFKecYmmGZFJLN0fs4mAEJEiAIu2VUIGwBMoJAT9r5s69ZWZVNaHhq9LZs1Lxu-q3Tj-aLd-773nKr28MCNb9wQz3jY-sPI6cZxGpq9j0L547kn8rYP1-yCdBX8zelO2efz08diGa3eXl4Xj6vIJiD6SCSUSwIgMJmHeZqgMVmOzkpRaCpcjmQdIQljQLiMpEHyTmuhKbOWIJmyu-Purmu_9j70atPuu2Z4qTDP0yRJAEdqdqRs14bQeVK7rqx1960Q1GhNDdbUaE0N1gY8PuG6Nl3p1v7P6n-FX4kAcAE</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Gibson, J. F.</creator><creator>Schneider, T. M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160510</creationdate><title>Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects</title><author>Gibson, J. F. ; Schneider, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-23f87f00f0b6e05431bb681dc729af9d81fcdf1f2bb02d6f7b1fedaa2af6ccf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fluid mechanics</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Reynolds number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibson, J. F.</creatorcontrib><creatorcontrib>Schneider, T. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibson, J. F.</au><au>Schneider, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>794</volume><spage>530</spage><epage>551</epage><pages>530-551</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift–Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar–turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the travelling wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.177</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2016-05, Vol.794, p.530-551 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1884333010 |
source | Cambridge University Press Journals Complete |
subjects | Fluid mechanics Navier-Stokes equations Numerical analysis Reynolds number |
title | Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoclinic%20snaking%20in%20plane%20Couette%20flow:%20bending,%20skewing%20and%20finite-size%20effects&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gibson,%20J.%20F.&rft.date=2016-05-10&rft.volume=794&rft.spage=530&rft.epage=551&rft.pages=530-551&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.177&rft_dat=%3Cproquest_cross%3E4321458697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884333010&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_177&rfr_iscdi=true |