Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects

Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-05, Vol.794, p.530-551
Hauptverfasser: Gibson, J. F., Schneider, T. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue
container_start_page 530
container_title Journal of fluid mechanics
container_volume 794
creator Gibson, J. F.
Schneider, T. M.
description Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift–Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar–turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the travelling wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium.
doi_str_mv 10.1017/jfm.2016.177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884333010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_177</cupid><sourcerecordid>4321458697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-23f87f00f0b6e05431bb681dc729af9d81fcdf1f2bb02d6f7b1fedaa2af6ccf03</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRsFZ3_oABt028d5JmEndS1AoFQXQ9zOuWtHnUTErRX29Cu3Dh6i7Od86Fj7FbhBgB5f2G6lgAZjFKecYmmGZFJLN0fs4mAEJEiAIu2VUIGwBMoJAT9r5s69ZWZVNaHhq9LZs1Lxu-q3Tj-aLd-773nKr28MCNb9wQz3jY-sPI6cZxGpq9j0L547kn8rYP1-yCdBX8zelO2efz08diGa3eXl4Xj6vIJiD6SCSUSwIgMJmHeZqgMVmOzkpRaCpcjmQdIQljQLiMpEHyTmuhKbOWIJmyu-Purmu_9j70atPuu2Z4qTDP0yRJAEdqdqRs14bQeVK7rqx1960Q1GhNDdbUaE0N1gY8PuG6Nl3p1v7P6n-FX4kAcAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884333010</pqid></control><display><type>article</type><title>Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects</title><source>Cambridge University Press Journals Complete</source><creator>Gibson, J. F. ; Schneider, T. M.</creator><creatorcontrib>Gibson, J. F. ; Schneider, T. M.</creatorcontrib><description>Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift–Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar–turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the travelling wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.177</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fluid mechanics ; Navier-Stokes equations ; Numerical analysis ; Reynolds number</subject><ispartof>Journal of fluid mechanics, 2016-05, Vol.794, p.530-551</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-23f87f00f0b6e05431bb681dc729af9d81fcdf1f2bb02d6f7b1fedaa2af6ccf03</citedby><cites>FETCH-LOGICAL-c302t-23f87f00f0b6e05431bb681dc729af9d81fcdf1f2bb02d6f7b1fedaa2af6ccf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016001774/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Gibson, J. F.</creatorcontrib><creatorcontrib>Schneider, T. M.</creatorcontrib><title>Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift–Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar–turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the travelling wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium.</description><subject>Fluid mechanics</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Reynolds number</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLw0AUhQdRsFZ3_oABt028d5JmEndS1AoFQXQ9zOuWtHnUTErRX29Cu3Dh6i7Od86Fj7FbhBgB5f2G6lgAZjFKecYmmGZFJLN0fs4mAEJEiAIu2VUIGwBMoJAT9r5s69ZWZVNaHhq9LZs1Lxu-q3Tj-aLd-773nKr28MCNb9wQz3jY-sPI6cZxGpq9j0L547kn8rYP1-yCdBX8zelO2efz08diGa3eXl4Xj6vIJiD6SCSUSwIgMJmHeZqgMVmOzkpRaCpcjmQdIQljQLiMpEHyTmuhKbOWIJmyu-Purmu_9j70atPuu2Z4qTDP0yRJAEdqdqRs14bQeVK7rqx1960Q1GhNDdbUaE0N1gY8PuG6Nl3p1v7P6n-FX4kAcAE</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Gibson, J. F.</creator><creator>Schneider, T. M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160510</creationdate><title>Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects</title><author>Gibson, J. F. ; Schneider, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-23f87f00f0b6e05431bb681dc729af9d81fcdf1f2bb02d6f7b1fedaa2af6ccf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fluid mechanics</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Reynolds number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibson, J. F.</creatorcontrib><creatorcontrib>Schneider, T. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibson, J. F.</au><au>Schneider, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>794</volume><spage>530</spage><epage>551</epage><pages>530-551</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift–Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar–turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the travelling wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.177</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-05, Vol.794, p.530-551
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1884333010
source Cambridge University Press Journals Complete
subjects Fluid mechanics
Navier-Stokes equations
Numerical analysis
Reynolds number
title Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoclinic%20snaking%20in%20plane%20Couette%20flow:%20bending,%20skewing%20and%20finite-size%20effects&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gibson,%20J.%20F.&rft.date=2016-05-10&rft.volume=794&rft.spage=530&rft.epage=551&rft.pages=530-551&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.177&rft_dat=%3Cproquest_cross%3E4321458697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884333010&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_177&rfr_iscdi=true