Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms

We present a study of the turbulent and acoustic fields of subsonic jets, controlled by means of a novel actuator that introduces perturbations via steady-fluidic actuation from a rotating centrebody. The actuation can produce louder or quieter jets, and these are analysed using time-resolved stereo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-02, Vol.788, p.358-380
Hauptverfasser: Kœnig, Maxime, Sasaki, Kenzo, Cavalieri, André V. G., Jordan, Peter, Gervais, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue
container_start_page 358
container_title Journal of fluid mechanics
container_volume 788
creator Kœnig, Maxime
Sasaki, Kenzo
Cavalieri, André V. G.
Jordan, Peter
Gervais, Yves
description We present a study of the turbulent and acoustic fields of subsonic jets, controlled by means of a novel actuator that introduces perturbations via steady-fluidic actuation from a rotating centrebody. The actuation can produce louder or quieter jets, and these are analysed using time-resolved stereoscopic particle image velocimetry and a hot-wire anemometer. We place the analysis in the framework of wavepackets and linear stability theory, whence we show, using solutions of the linear parabolised stability equations, that the quieter flows can be understood to result from a mean-flow deformation that modifies wavepacket dynamics, and in particular their phase velocities, which are significantly reduced. The mean-flow deformation is shown, by a triple decomposition, to be due to the generation of Reynolds stresses associated with incoherent turbulence (rather than coherent structures) which arises when the actuation energises the flow with a frequency–azimuthal wavenumber ( ${\it\omega}$ – $m$ ) combination to which the mean flow is stable. When the actuation excites the flow with an ${\it\omega}$ – $m$ combination to which the mean flow is unstable, the response is dominated by coherent structures, whose rapid growth takes them beyond the linear limit, where they undergo quadratic wave interactions and lead, consequently, to a louder flow.
doi_str_mv 10.1017/jfm.2015.670
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884317995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_670</cupid><sourcerecordid>4321457435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-47acd46bf1763f497998174db21dfa4fe8e6f33fb03d014752caa5b5b0d4ab3b3</originalsourceid><addsrcrecordid>eNptkDtOxDAQhi0EEstCxwEs0ZLgV-KEDq14aiUaqC0_F0eJvdhJsbfhLJyMrNiCgmZGI33zz-gD4BKjEiPMbzo3lAThqqw5OgILzOq24DWrjsECIUIKjAk6BWc5dwhhilq-AN2LHYsQfbZQxzCm2EO1g66fvPEa-tBZPfoYoEtxgBKmOMrRhw3c9tPmFvY-WJmgDAaGGA5TjlMwxVyTtt9fg9UfMvg85HNw4mSf7cWhL8H7w_3b6qlYvz4-r-7WhSaUjAXjUhtWK4d5TR1reds2mDOjCDZOMmcbWztKnULUIMx4RbSUlaoUMkwqqugSXP3mblP8nGweRTf_EuaTAjcNo3hOrGbq-pfSKeacrBPb5AeZdgIjsbcpZptib1PMNme8POByUMmbjf2T-t_CD03eebA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884317995</pqid></control><display><type>article</type><title>Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms</title><source>Cambridge University Press Journals Complete</source><creator>Kœnig, Maxime ; Sasaki, Kenzo ; Cavalieri, André V. G. ; Jordan, Peter ; Gervais, Yves</creator><creatorcontrib>Kœnig, Maxime ; Sasaki, Kenzo ; Cavalieri, André V. G. ; Jordan, Peter ; Gervais, Yves</creatorcontrib><description>We present a study of the turbulent and acoustic fields of subsonic jets, controlled by means of a novel actuator that introduces perturbations via steady-fluidic actuation from a rotating centrebody. The actuation can produce louder or quieter jets, and these are analysed using time-resolved stereoscopic particle image velocimetry and a hot-wire anemometer. We place the analysis in the framework of wavepackets and linear stability theory, whence we show, using solutions of the linear parabolised stability equations, that the quieter flows can be understood to result from a mean-flow deformation that modifies wavepacket dynamics, and in particular their phase velocities, which are significantly reduced. The mean-flow deformation is shown, by a triple decomposition, to be due to the generation of Reynolds stresses associated with incoherent turbulence (rather than coherent structures) which arises when the actuation energises the flow with a frequency–azimuthal wavenumber ( ${\it\omega}$ – $m$ ) combination to which the mean flow is stable. When the actuation excites the flow with an ${\it\omega}$ – $m$ combination to which the mean flow is unstable, the response is dominated by coherent structures, whose rapid growth takes them beyond the linear limit, where they undergo quadratic wave interactions and lead, consequently, to a louder flow.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.670</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Flow ; Fluid mechanics ; Noise control ; Surface acoustic waves ; Turbulence</subject><ispartof>Journal of fluid mechanics, 2016-02, Vol.788, p.358-380</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-47acd46bf1763f497998174db21dfa4fe8e6f33fb03d014752caa5b5b0d4ab3b3</citedby><cites>FETCH-LOGICAL-c232t-47acd46bf1763f497998174db21dfa4fe8e6f33fb03d014752caa5b5b0d4ab3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015006709/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Kœnig, Maxime</creatorcontrib><creatorcontrib>Sasaki, Kenzo</creatorcontrib><creatorcontrib>Cavalieri, André V. G.</creatorcontrib><creatorcontrib>Jordan, Peter</creatorcontrib><creatorcontrib>Gervais, Yves</creatorcontrib><title>Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We present a study of the turbulent and acoustic fields of subsonic jets, controlled by means of a novel actuator that introduces perturbations via steady-fluidic actuation from a rotating centrebody. The actuation can produce louder or quieter jets, and these are analysed using time-resolved stereoscopic particle image velocimetry and a hot-wire anemometer. We place the analysis in the framework of wavepackets and linear stability theory, whence we show, using solutions of the linear parabolised stability equations, that the quieter flows can be understood to result from a mean-flow deformation that modifies wavepacket dynamics, and in particular their phase velocities, which are significantly reduced. The mean-flow deformation is shown, by a triple decomposition, to be due to the generation of Reynolds stresses associated with incoherent turbulence (rather than coherent structures) which arises when the actuation energises the flow with a frequency–azimuthal wavenumber ( ${\it\omega}$ – $m$ ) combination to which the mean flow is stable. When the actuation excites the flow with an ${\it\omega}$ – $m$ combination to which the mean flow is unstable, the response is dominated by coherent structures, whose rapid growth takes them beyond the linear limit, where they undergo quadratic wave interactions and lead, consequently, to a louder flow.</description><subject>Flow</subject><subject>Fluid mechanics</subject><subject>Noise control</subject><subject>Surface acoustic waves</subject><subject>Turbulence</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkDtOxDAQhi0EEstCxwEs0ZLgV-KEDq14aiUaqC0_F0eJvdhJsbfhLJyMrNiCgmZGI33zz-gD4BKjEiPMbzo3lAThqqw5OgILzOq24DWrjsECIUIKjAk6BWc5dwhhilq-AN2LHYsQfbZQxzCm2EO1g66fvPEa-tBZPfoYoEtxgBKmOMrRhw3c9tPmFvY-WJmgDAaGGA5TjlMwxVyTtt9fg9UfMvg85HNw4mSf7cWhL8H7w_3b6qlYvz4-r-7WhSaUjAXjUhtWK4d5TR1reds2mDOjCDZOMmcbWztKnULUIMx4RbSUlaoUMkwqqugSXP3mblP8nGweRTf_EuaTAjcNo3hOrGbq-pfSKeacrBPb5AeZdgIjsbcpZptib1PMNme8POByUMmbjf2T-t_CD03eebA</recordid><startdate>20160210</startdate><enddate>20160210</enddate><creator>Kœnig, Maxime</creator><creator>Sasaki, Kenzo</creator><creator>Cavalieri, André V. G.</creator><creator>Jordan, Peter</creator><creator>Gervais, Yves</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160210</creationdate><title>Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms</title><author>Kœnig, Maxime ; Sasaki, Kenzo ; Cavalieri, André V. G. ; Jordan, Peter ; Gervais, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-47acd46bf1763f497998174db21dfa4fe8e6f33fb03d014752caa5b5b0d4ab3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Flow</topic><topic>Fluid mechanics</topic><topic>Noise control</topic><topic>Surface acoustic waves</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kœnig, Maxime</creatorcontrib><creatorcontrib>Sasaki, Kenzo</creatorcontrib><creatorcontrib>Cavalieri, André V. G.</creatorcontrib><creatorcontrib>Jordan, Peter</creatorcontrib><creatorcontrib>Gervais, Yves</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kœnig, Maxime</au><au>Sasaki, Kenzo</au><au>Cavalieri, André V. G.</au><au>Jordan, Peter</au><au>Gervais, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-02-10</date><risdate>2016</risdate><volume>788</volume><spage>358</spage><epage>380</epage><pages>358-380</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We present a study of the turbulent and acoustic fields of subsonic jets, controlled by means of a novel actuator that introduces perturbations via steady-fluidic actuation from a rotating centrebody. The actuation can produce louder or quieter jets, and these are analysed using time-resolved stereoscopic particle image velocimetry and a hot-wire anemometer. We place the analysis in the framework of wavepackets and linear stability theory, whence we show, using solutions of the linear parabolised stability equations, that the quieter flows can be understood to result from a mean-flow deformation that modifies wavepacket dynamics, and in particular their phase velocities, which are significantly reduced. The mean-flow deformation is shown, by a triple decomposition, to be due to the generation of Reynolds stresses associated with incoherent turbulence (rather than coherent structures) which arises when the actuation energises the flow with a frequency–azimuthal wavenumber ( ${\it\omega}$ – $m$ ) combination to which the mean flow is stable. When the actuation excites the flow with an ${\it\omega}$ – $m$ combination to which the mean flow is unstable, the response is dominated by coherent structures, whose rapid growth takes them beyond the linear limit, where they undergo quadratic wave interactions and lead, consequently, to a louder flow.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.670</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-02, Vol.788, p.358-380
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1884317995
source Cambridge University Press Journals Complete
subjects Flow
Fluid mechanics
Noise control
Surface acoustic waves
Turbulence
title Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jet-noise%20control%20by%20fluidic%20injection%20from%20a%20rotating%20plug:%20linear%20and%20nonlinear%20sound-source%C2%A0mechanisms&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=K%C5%93nig,%20Maxime&rft.date=2016-02-10&rft.volume=788&rft.spage=358&rft.epage=380&rft.pages=358-380&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.670&rft_dat=%3Cproquest_cross%3E4321457435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884317995&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_670&rfr_iscdi=true