Effect of small roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds number

A zero-pressure-gradient turbulent boundary layer flowing over a transitionally rough surface (24-grit sandpaper) with $k^{+}\approx 11$ and a momentum-thickness Reynolds number of approximately 2400 is studied using direct numerical simulation (DNS). Heat transfer between the isothermal rough surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-01, Vol.787, p.84-115
Hauptverfasser: Doosttalab, Ali, Araya, Guillermo, Newman, Jensen, Adrian, Ronald J., Jansen, Kenneth, Castillo, Luciano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue
container_start_page 84
container_title Journal of fluid mechanics
container_volume 787
creator Doosttalab, Ali
Araya, Guillermo
Newman, Jensen
Adrian, Ronald J.
Jansen, Kenneth
Castillo, Luciano
description A zero-pressure-gradient turbulent boundary layer flowing over a transitionally rough surface (24-grit sandpaper) with $k^{+}\approx 11$ and a momentum-thickness Reynolds number of approximately 2400 is studied using direct numerical simulation (DNS). Heat transfer between the isothermal rough surface and the turbulent flow with molecular Prandtl number $Pr=0.71$ is simulated. The dynamic multiscale approach developed by Araya et al. (J. Fluid Mech., vol. 670, 2011, pp. 581–605) is employed to prescribe realistic time-dependent thermal inflow boundary conditions. In general, the rough surface reduces mean and fluctuating temperature profiles with respect to the smooth surface flow when normalized by Wang & Castillo (J. Turbul., vol. 4, 2003, 006) inner/outer scaling. It is shown that the Reynolds analogy does not hold for $y^{+}
doi_str_mv 10.1017/jfm.2015.676
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884317924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_676</cupid><sourcerecordid>4321457477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-5d04c1a56353983c7b44e2e1a93c857fa7c0346cd89c29a41315021bf82748d43</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMssZLgs504GVFVPqRKSAhmy3EubaokLrYz9N-TqB0YmG64531P9xByDywFBupp3_QpZ5ClucovyAJkXiYql9klWTDGeQLA2TW5CWHPGAhWqgXx66ZBG6lraOhN11Hvxu1uwBAodtjjEAN1A4079NOahmhiG2Jrw5wwNI6-GruJopUbh9r4I-3MET01kfauRm8i0k88Dq6rAx3GvkJ_S64a0wW8O88l-X5Zf63eks3H6_vqeZNYwXhMsppJCybLRSbKQlhVSYkcwZTCFplqjLJMyNzWRWl5aSQIyBiHqim4kkUtxZI8nHoP3v2MGKLeu9EP00kNRSEFqJLP1OOJst6F4LHRB9_20yMamJ6t6smqnq3qyeqEp2fc9JVv6y3-af0v8AtkrHqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884317924</pqid></control><display><type>article</type><title>Effect of small roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds number</title><source>Cambridge University Press Journals Complete</source><creator>Doosttalab, Ali ; Araya, Guillermo ; Newman, Jensen ; Adrian, Ronald J. ; Jansen, Kenneth ; Castillo, Luciano</creator><creatorcontrib>Doosttalab, Ali ; Araya, Guillermo ; Newman, Jensen ; Adrian, Ronald J. ; Jansen, Kenneth ; Castillo, Luciano</creatorcontrib><description>A zero-pressure-gradient turbulent boundary layer flowing over a transitionally rough surface (24-grit sandpaper) with $k^{+}\approx 11$ and a momentum-thickness Reynolds number of approximately 2400 is studied using direct numerical simulation (DNS). Heat transfer between the isothermal rough surface and the turbulent flow with molecular Prandtl number $Pr=0.71$ is simulated. The dynamic multiscale approach developed by Araya et al. (J. Fluid Mech., vol. 670, 2011, pp. 581–605) is employed to prescribe realistic time-dependent thermal inflow boundary conditions. In general, the rough surface reduces mean and fluctuating temperature profiles with respect to the smooth surface flow when normalized by Wang &amp; Castillo (J. Turbul., vol. 4, 2003, 006) inner/outer scaling. It is shown that the Reynolds analogy does not hold for $y^{+}&lt;9$ . In this region the value of the turbulent Prandtl number departs substantially from unity. Above this region the Reynolds analogy is only approximately valid, with the turbulent Prandtl number decreasing from 1 to 0.7 across the boundary layer for rough and smooth walls. In comparison with the smooth-wall case, the turbulent transport of heat per unit mass, $\overline{v^{\prime }v^{\prime }{\it\theta}^{\prime }}$ , towards the wall is enhanced in the buffer layer, but the transport of $\overline{v^{\prime }v^{\prime }{\it\theta}^{\prime }}$ away from the wall is reduced in the outer layer for the rough case; similar behaviour is found for the vertical transport of turbulent momentum per unit mass, $\overline{v^{\prime }u^{\prime }v^{\prime }}$ . Above the roughness sublayer (3 $k$ –5 $k$ ) it is found that most of the temperature field statistics, including higher-order moments and conditional averages, are highly similar for the smooth and rough surface flow, showing that the Townsend’s Reynolds number similarity hypothesis applies for the thermal field as well as the velocity field for the Reynolds number and $k^{+}$ considered in this study.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.676</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary conditions ; Boundary layer ; Boundary layers ; Fluid mechanics ; Heat transfer ; Reynolds number ; Statistics ; Surface flow ; Surface roughness ; Turbulence ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2016-01, Vol.787, p.84-115</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-5d04c1a56353983c7b44e2e1a93c857fa7c0346cd89c29a41315021bf82748d43</citedby><cites>FETCH-LOGICAL-c302t-5d04c1a56353983c7b44e2e1a93c857fa7c0346cd89c29a41315021bf82748d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211201500676X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids></links><search><creatorcontrib>Doosttalab, Ali</creatorcontrib><creatorcontrib>Araya, Guillermo</creatorcontrib><creatorcontrib>Newman, Jensen</creatorcontrib><creatorcontrib>Adrian, Ronald J.</creatorcontrib><creatorcontrib>Jansen, Kenneth</creatorcontrib><creatorcontrib>Castillo, Luciano</creatorcontrib><title>Effect of small roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds number</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A zero-pressure-gradient turbulent boundary layer flowing over a transitionally rough surface (24-grit sandpaper) with $k^{+}\approx 11$ and a momentum-thickness Reynolds number of approximately 2400 is studied using direct numerical simulation (DNS). Heat transfer between the isothermal rough surface and the turbulent flow with molecular Prandtl number $Pr=0.71$ is simulated. The dynamic multiscale approach developed by Araya et al. (J. Fluid Mech., vol. 670, 2011, pp. 581–605) is employed to prescribe realistic time-dependent thermal inflow boundary conditions. In general, the rough surface reduces mean and fluctuating temperature profiles with respect to the smooth surface flow when normalized by Wang &amp; Castillo (J. Turbul., vol. 4, 2003, 006) inner/outer scaling. It is shown that the Reynolds analogy does not hold for $y^{+}&lt;9$ . In this region the value of the turbulent Prandtl number departs substantially from unity. Above this region the Reynolds analogy is only approximately valid, with the turbulent Prandtl number decreasing from 1 to 0.7 across the boundary layer for rough and smooth walls. In comparison with the smooth-wall case, the turbulent transport of heat per unit mass, $\overline{v^{\prime }v^{\prime }{\it\theta}^{\prime }}$ , towards the wall is enhanced in the buffer layer, but the transport of $\overline{v^{\prime }v^{\prime }{\it\theta}^{\prime }}$ away from the wall is reduced in the outer layer for the rough case; similar behaviour is found for the vertical transport of turbulent momentum per unit mass, $\overline{v^{\prime }u^{\prime }v^{\prime }}$ . Above the roughness sublayer (3 $k$ –5 $k$ ) it is found that most of the temperature field statistics, including higher-order moments and conditional averages, are highly similar for the smooth and rough surface flow, showing that the Townsend’s Reynolds number similarity hypothesis applies for the thermal field as well as the velocity field for the Reynolds number and $k^{+}$ considered in this study.</description><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Fluid mechanics</subject><subject>Heat transfer</subject><subject>Reynolds number</subject><subject>Statistics</subject><subject>Surface flow</subject><subject>Surface roughness</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMssZLgs504GVFVPqRKSAhmy3EubaokLrYz9N-TqB0YmG64531P9xByDywFBupp3_QpZ5ClucovyAJkXiYql9klWTDGeQLA2TW5CWHPGAhWqgXx66ZBG6lraOhN11Hvxu1uwBAodtjjEAN1A4079NOahmhiG2Jrw5wwNI6-GruJopUbh9r4I-3MET01kfauRm8i0k88Dq6rAx3GvkJ_S64a0wW8O88l-X5Zf63eks3H6_vqeZNYwXhMsppJCybLRSbKQlhVSYkcwZTCFplqjLJMyNzWRWl5aSQIyBiHqim4kkUtxZI8nHoP3v2MGKLeu9EP00kNRSEFqJLP1OOJst6F4LHRB9_20yMamJ6t6smqnq3qyeqEp2fc9JVv6y3-af0v8AtkrHqs</recordid><startdate>20160125</startdate><enddate>20160125</enddate><creator>Doosttalab, Ali</creator><creator>Araya, Guillermo</creator><creator>Newman, Jensen</creator><creator>Adrian, Ronald J.</creator><creator>Jansen, Kenneth</creator><creator>Castillo, Luciano</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160125</creationdate><title>Effect of small roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds number</title><author>Doosttalab, Ali ; Araya, Guillermo ; Newman, Jensen ; Adrian, Ronald J. ; Jansen, Kenneth ; Castillo, Luciano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-5d04c1a56353983c7b44e2e1a93c857fa7c0346cd89c29a41315021bf82748d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Fluid mechanics</topic><topic>Heat transfer</topic><topic>Reynolds number</topic><topic>Statistics</topic><topic>Surface flow</topic><topic>Surface roughness</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doosttalab, Ali</creatorcontrib><creatorcontrib>Araya, Guillermo</creatorcontrib><creatorcontrib>Newman, Jensen</creatorcontrib><creatorcontrib>Adrian, Ronald J.</creatorcontrib><creatorcontrib>Jansen, Kenneth</creatorcontrib><creatorcontrib>Castillo, Luciano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doosttalab, Ali</au><au>Araya, Guillermo</au><au>Newman, Jensen</au><au>Adrian, Ronald J.</au><au>Jansen, Kenneth</au><au>Castillo, Luciano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of small roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds number</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-01-25</date><risdate>2016</risdate><volume>787</volume><spage>84</spage><epage>115</epage><pages>84-115</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A zero-pressure-gradient turbulent boundary layer flowing over a transitionally rough surface (24-grit sandpaper) with $k^{+}\approx 11$ and a momentum-thickness Reynolds number of approximately 2400 is studied using direct numerical simulation (DNS). Heat transfer between the isothermal rough surface and the turbulent flow with molecular Prandtl number $Pr=0.71$ is simulated. The dynamic multiscale approach developed by Araya et al. (J. Fluid Mech., vol. 670, 2011, pp. 581–605) is employed to prescribe realistic time-dependent thermal inflow boundary conditions. In general, the rough surface reduces mean and fluctuating temperature profiles with respect to the smooth surface flow when normalized by Wang &amp; Castillo (J. Turbul., vol. 4, 2003, 006) inner/outer scaling. It is shown that the Reynolds analogy does not hold for $y^{+}&lt;9$ . In this region the value of the turbulent Prandtl number departs substantially from unity. Above this region the Reynolds analogy is only approximately valid, with the turbulent Prandtl number decreasing from 1 to 0.7 across the boundary layer for rough and smooth walls. In comparison with the smooth-wall case, the turbulent transport of heat per unit mass, $\overline{v^{\prime }v^{\prime }{\it\theta}^{\prime }}$ , towards the wall is enhanced in the buffer layer, but the transport of $\overline{v^{\prime }v^{\prime }{\it\theta}^{\prime }}$ away from the wall is reduced in the outer layer for the rough case; similar behaviour is found for the vertical transport of turbulent momentum per unit mass, $\overline{v^{\prime }u^{\prime }v^{\prime }}$ . Above the roughness sublayer (3 $k$ –5 $k$ ) it is found that most of the temperature field statistics, including higher-order moments and conditional averages, are highly similar for the smooth and rough surface flow, showing that the Townsend’s Reynolds number similarity hypothesis applies for the thermal field as well as the velocity field for the Reynolds number and $k^{+}$ considered in this study.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.676</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-01, Vol.787, p.84-115
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1884317924
source Cambridge University Press Journals Complete
subjects Boundary conditions
Boundary layer
Boundary layers
Fluid mechanics
Heat transfer
Reynolds number
Statistics
Surface flow
Surface roughness
Turbulence
Turbulent flow
title Effect of small roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20small%20roughness%20elements%20on%20thermal%20statistics%20of%20a%20turbulent%20boundary%20layer%20at%20moderate%20Reynolds%20number&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Doosttalab,%20Ali&rft.date=2016-01-25&rft.volume=787&rft.spage=84&rft.epage=115&rft.pages=84-115&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.676&rft_dat=%3Cproquest_cross%3E4321457477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884317924&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_676&rfr_iscdi=true