A magnetophoresis-based microfluidic detection platform under a static-fluid environment
Microfluidic cell separations and immunoassays exploit a dynamic flow environment by electrical pumps to manipulate fluids containing biomolecules and microbeads. In particular, the magnetophoresis-based microfluidics requires a delicate flow control of pumps because the flow rate affects the result...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2017-04, Vol.21 (4), p.1, Article 74 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Microfluidics and nanofluidics |
container_volume | 21 |
creator | Jo, Younggeun Hahn, Young Ki Park, Je-Kyun |
description | Microfluidic cell separations and immunoassays exploit a dynamic flow environment by electrical pumps to manipulate fluids containing biomolecules and microbeads. In particular, the magnetophoresis-based microfluidics requires a delicate flow control of pumps because the flow rate affects the result sensitively. Consequently, the dynamic flow environment requiring pumps prevents the magnetophoresis-based microfluidics from popularization and miniaturization. Herein, we present a magnetophoresis-based microfluidic platform under a static-fluid environment for the detection of microbeads labeled with magnetic nanoparticles (MNPs) by simple manual operation of fluids. To overcome the residual flow caused by the manual operation, we designed a microfluidic device having a pair of microchannels; one for detecting the target and the other for a reference. The deviations due to the residual flow were corrected by comparing the difference between the mean velocities of microbeads in each microchannel where microbeads labeled with five different concentrations of MNPs could be classified. On the basis of the convenience and portability of magnetophoresis under a static-fluidic environment, this new microfluidic platform enabled semiquantitative detection of labeled particles without any complex electrical devices and could thus be used as a portable detection platform. |
doi_str_mv | 10.1007/s10404-017-1910-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1883985077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321434319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-fdaaa7fbc54589aaa21ffc68e714303d5e896b5cdfc86d20572301e12bc49c8a3</originalsourceid><addsrcrecordid>eNp1kMtKBDEQRYMoOI5-gLuA62gq_Uh6OQy-QHCj4C6k8xgzTHfaJC3M39tji7hxVbU49xZ1ELoEeg2U8psEtKQlocAJNEDJ_ggtoIaClE1Dj393wU7RWUpbSkvOgC7Q2wp3atPbHIb3EG3yibQqWYM7r2Nwu9Ebr7Gx2ersQ4-HncouxA6PvbERK5yyyl6TbxLb_tPH0He2z-foxKldshc_c4le725f1g_k6fn-cb16IroQLBNnlFLctboqK9FMOwPndC0sh7KghamsaOq20sZpURtGK84KChZYq8tGC1Us0dXcO8TwMdqU5TaMsZ9OShCiaERFOZ8omKnpqZSidXKIvlNxL4HKg0A5C5STQHkQKPdThs2ZNLH9xsY_zf-GvgAsVXW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883985077</pqid></control><display><type>article</type><title>A magnetophoresis-based microfluidic detection platform under a static-fluid environment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jo, Younggeun ; Hahn, Young Ki ; Park, Je-Kyun</creator><creatorcontrib>Jo, Younggeun ; Hahn, Young Ki ; Park, Je-Kyun</creatorcontrib><description>Microfluidic cell separations and immunoassays exploit a dynamic flow environment by electrical pumps to manipulate fluids containing biomolecules and microbeads. In particular, the magnetophoresis-based microfluidics requires a delicate flow control of pumps because the flow rate affects the result sensitively. Consequently, the dynamic flow environment requiring pumps prevents the magnetophoresis-based microfluidics from popularization and miniaturization. Herein, we present a magnetophoresis-based microfluidic platform under a static-fluid environment for the detection of microbeads labeled with magnetic nanoparticles (MNPs) by simple manual operation of fluids. To overcome the residual flow caused by the manual operation, we designed a microfluidic device having a pair of microchannels; one for detecting the target and the other for a reference. The deviations due to the residual flow were corrected by comparing the difference between the mean velocities of microbeads in each microchannel where microbeads labeled with five different concentrations of MNPs could be classified. On the basis of the convenience and portability of magnetophoresis under a static-fluidic environment, this new microfluidic platform enabled semiquantitative detection of labeled particles without any complex electrical devices and could thus be used as a portable detection platform.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-017-1910-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>2016 International Conference of Microfluidics ; Analytical Chemistry ; Biomedical Engineering and Bioengineering ; China ; Dalian ; Engineering ; Engineering Fluid Dynamics ; Flow control ; Flow rates ; Immunoassays ; Nanofluidics and Lab-on-a-Chip ; Nanotechnology and Microengineering ; Pumps ; Research Paper</subject><ispartof>Microfluidics and nanofluidics, 2017-04, Vol.21 (4), p.1, Article 74</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Microfluidics and Nanofluidics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-fdaaa7fbc54589aaa21ffc68e714303d5e896b5cdfc86d20572301e12bc49c8a3</citedby><cites>FETCH-LOGICAL-c382t-fdaaa7fbc54589aaa21ffc68e714303d5e896b5cdfc86d20572301e12bc49c8a3</cites><orcidid>0000-0003-4522-2574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-017-1910-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-017-1910-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jo, Younggeun</creatorcontrib><creatorcontrib>Hahn, Young Ki</creatorcontrib><creatorcontrib>Park, Je-Kyun</creatorcontrib><title>A magnetophoresis-based microfluidic detection platform under a static-fluid environment</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Microfluidic cell separations and immunoassays exploit a dynamic flow environment by electrical pumps to manipulate fluids containing biomolecules and microbeads. In particular, the magnetophoresis-based microfluidics requires a delicate flow control of pumps because the flow rate affects the result sensitively. Consequently, the dynamic flow environment requiring pumps prevents the magnetophoresis-based microfluidics from popularization and miniaturization. Herein, we present a magnetophoresis-based microfluidic platform under a static-fluid environment for the detection of microbeads labeled with magnetic nanoparticles (MNPs) by simple manual operation of fluids. To overcome the residual flow caused by the manual operation, we designed a microfluidic device having a pair of microchannels; one for detecting the target and the other for a reference. The deviations due to the residual flow were corrected by comparing the difference between the mean velocities of microbeads in each microchannel where microbeads labeled with five different concentrations of MNPs could be classified. On the basis of the convenience and portability of magnetophoresis under a static-fluidic environment, this new microfluidic platform enabled semiquantitative detection of labeled particles without any complex electrical devices and could thus be used as a portable detection platform.</description><subject>2016 International Conference of Microfluidics</subject><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>China</subject><subject>Dalian</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Flow control</subject><subject>Flow rates</subject><subject>Immunoassays</subject><subject>Nanofluidics and Lab-on-a-Chip</subject><subject>Nanotechnology and Microengineering</subject><subject>Pumps</subject><subject>Research Paper</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKBDEQRYMoOI5-gLuA62gq_Uh6OQy-QHCj4C6k8xgzTHfaJC3M39tji7hxVbU49xZ1ELoEeg2U8psEtKQlocAJNEDJ_ggtoIaClE1Dj393wU7RWUpbSkvOgC7Q2wp3atPbHIb3EG3yibQqWYM7r2Nwu9Ebr7Gx2ersQ4-HncouxA6PvbERK5yyyl6TbxLb_tPH0He2z-foxKldshc_c4le725f1g_k6fn-cb16IroQLBNnlFLctboqK9FMOwPndC0sh7KghamsaOq20sZpURtGK84KChZYq8tGC1Us0dXcO8TwMdqU5TaMsZ9OShCiaERFOZ8omKnpqZSidXKIvlNxL4HKg0A5C5STQHkQKPdThs2ZNLH9xsY_zf-GvgAsVXW0</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Jo, Younggeun</creator><creator>Hahn, Young Ki</creator><creator>Park, Je-Kyun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4522-2574</orcidid></search><sort><creationdate>20170401</creationdate><title>A magnetophoresis-based microfluidic detection platform under a static-fluid environment</title><author>Jo, Younggeun ; Hahn, Young Ki ; Park, Je-Kyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-fdaaa7fbc54589aaa21ffc68e714303d5e896b5cdfc86d20572301e12bc49c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2016 International Conference of Microfluidics</topic><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>China</topic><topic>Dalian</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Flow control</topic><topic>Flow rates</topic><topic>Immunoassays</topic><topic>Nanofluidics and Lab-on-a-Chip</topic><topic>Nanotechnology and Microengineering</topic><topic>Pumps</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Younggeun</creatorcontrib><creatorcontrib>Hahn, Young Ki</creatorcontrib><creatorcontrib>Park, Je-Kyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Younggeun</au><au>Hahn, Young Ki</au><au>Park, Je-Kyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A magnetophoresis-based microfluidic detection platform under a static-fluid environment</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>74</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Microfluidic cell separations and immunoassays exploit a dynamic flow environment by electrical pumps to manipulate fluids containing biomolecules and microbeads. In particular, the magnetophoresis-based microfluidics requires a delicate flow control of pumps because the flow rate affects the result sensitively. Consequently, the dynamic flow environment requiring pumps prevents the magnetophoresis-based microfluidics from popularization and miniaturization. Herein, we present a magnetophoresis-based microfluidic platform under a static-fluid environment for the detection of microbeads labeled with magnetic nanoparticles (MNPs) by simple manual operation of fluids. To overcome the residual flow caused by the manual operation, we designed a microfluidic device having a pair of microchannels; one for detecting the target and the other for a reference. The deviations due to the residual flow were corrected by comparing the difference between the mean velocities of microbeads in each microchannel where microbeads labeled with five different concentrations of MNPs could be classified. On the basis of the convenience and portability of magnetophoresis under a static-fluidic environment, this new microfluidic platform enabled semiquantitative detection of labeled particles without any complex electrical devices and could thus be used as a portable detection platform.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-017-1910-y</doi><orcidid>https://orcid.org/0000-0003-4522-2574</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2017-04, Vol.21 (4), p.1, Article 74 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_1883985077 |
source | SpringerLink Journals - AutoHoldings |
subjects | 2016 International Conference of Microfluidics Analytical Chemistry Biomedical Engineering and Bioengineering China Dalian Engineering Engineering Fluid Dynamics Flow control Flow rates Immunoassays Nanofluidics and Lab-on-a-Chip Nanotechnology and Microengineering Pumps Research Paper |
title | A magnetophoresis-based microfluidic detection platform under a static-fluid environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20magnetophoresis-based%20microfluidic%20detection%20platform%20under%20a%20static-fluid%20environment&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Jo,%20Younggeun&rft.date=2017-04-01&rft.volume=21&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=74&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-017-1910-y&rft_dat=%3Cproquest_cross%3E4321434319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883985077&rft_id=info:pmid/&rfr_iscdi=true |