Spectral analysis for travelling waves in compressible two-phase fluids of Navier–Stokes–Allen–Cahn type
This is the first part of two papers whose purpose is to investigate stability of travelling wave solutions to the so-called Navier–Stokes–Allen–Cahn system. This set of equations is a combination of the Navier–Stokes equations for compressible fluids supplemented with a phase field description of A...
Gespeichert in:
Veröffentlicht in: | Journal of evolution equations 2017-03, Vol.17 (1), p.359-385 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | 1 |
container_start_page | 359 |
container_title | Journal of evolution equations |
container_volume | 17 |
creator | Kotschote, Matthias |
description | This is the first part of two papers whose purpose is to investigate stability of travelling wave solutions to the so-called Navier–Stokes–Allen–Cahn system. This set of equations is a combination of the Navier–Stokes equations for compressible fluids supplemented with a phase field description of Allen–Cahn type. The main part of this work deals with studying the problem obtained by linearizing the NSAC system around so-called standing waves. The main results are (1) local well-posedness of the linearized equations and (2) a detailed description of the point and essential spectrum. As a by-product, we obtain analyticity of the associated semigroup. |
doi_str_mv | 10.1007/s00028-016-0380-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1882812964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1882812964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4f78f28db0034ac168de718a7b9d4241b7d4b8f900645d63d4b5cea188d9ffd53</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPE2bDO0zlWFS-pgkPhbDmJ3aa4cfCmrXrjH_hDvgRXAYkLl53Z1exIM4RccrjmAPkNAkAkGPCMQSyAwREZ8SRKWBxBdPzLeVGckjPEFQDPU5GOSDvvdNV7Zalqld1jg9Q4T8Nlq61t2gXdBYa0aWnl1p3XiE1pNe13jnVLhZoau2lqpM7QJ7VttP_6-Jz37k1jIBNrdRtwqpYt7fedPicnRlnUFz84Jq93ty_TBzZ7vn-cTmasinnWs8TkwkSiLgHiRFU8E7XOuVB5WdQhCC_zOimFKQCyJK2zOGxppRUXoi6MqdN4TK4G3867943GXq7cxoeEKIMoEjwqsiSo-KCqvEP02sjON2vl95KDPNQqh1plqFUeag1jTKLhB4O2XWj_x_nfp2_lyH7l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882812964</pqid></control><display><type>article</type><title>Spectral analysis for travelling waves in compressible two-phase fluids of Navier–Stokes–Allen–Cahn type</title><source>SpringerLink Journals</source><creator>Kotschote, Matthias</creator><creatorcontrib>Kotschote, Matthias</creatorcontrib><description>This is the first part of two papers whose purpose is to investigate stability of travelling wave solutions to the so-called Navier–Stokes–Allen–Cahn system. This set of equations is a combination of the Navier–Stokes equations for compressible fluids supplemented with a phase field description of Allen–Cahn type. The main part of this work deals with studying the problem obtained by linearizing the NSAC system around so-called standing waves. The main results are (1) local well-posedness of the linearized equations and (2) a detailed description of the point and essential spectrum. As a by-product, we obtain analyticity of the associated semigroup.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-016-0380-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations</subject><ispartof>Journal of evolution equations, 2017-03, Vol.17 (1), p.359-385</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4f78f28db0034ac168de718a7b9d4241b7d4b8f900645d63d4b5cea188d9ffd53</citedby><cites>FETCH-LOGICAL-c316t-4f78f28db0034ac168de718a7b9d4241b7d4b8f900645d63d4b5cea188d9ffd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00028-016-0380-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00028-016-0380-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kotschote, Matthias</creatorcontrib><title>Spectral analysis for travelling waves in compressible two-phase fluids of Navier–Stokes–Allen–Cahn type</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>This is the first part of two papers whose purpose is to investigate stability of travelling wave solutions to the so-called Navier–Stokes–Allen–Cahn system. This set of equations is a combination of the Navier–Stokes equations for compressible fluids supplemented with a phase field description of Allen–Cahn type. The main part of this work deals with studying the problem obtained by linearizing the NSAC system around so-called standing waves. The main results are (1) local well-posedness of the linearized equations and (2) a detailed description of the point and essential spectrum. As a by-product, we obtain analyticity of the associated semigroup.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcLPE2bDO0zlWFS-pgkPhbDmJ3aa4cfCmrXrjH_hDvgRXAYkLl53Z1exIM4RccrjmAPkNAkAkGPCMQSyAwREZ8SRKWBxBdPzLeVGckjPEFQDPU5GOSDvvdNV7Zalqld1jg9Q4T8Nlq61t2gXdBYa0aWnl1p3XiE1pNe13jnVLhZoau2lqpM7QJ7VttP_6-Jz37k1jIBNrdRtwqpYt7fedPicnRlnUFz84Jq93ty_TBzZ7vn-cTmasinnWs8TkwkSiLgHiRFU8E7XOuVB5WdQhCC_zOimFKQCyJK2zOGxppRUXoi6MqdN4TK4G3867943GXq7cxoeEKIMoEjwqsiSo-KCqvEP02sjON2vl95KDPNQqh1plqFUeag1jTKLhB4O2XWj_x_nfp2_lyH7l</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Kotschote, Matthias</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Spectral analysis for travelling waves in compressible two-phase fluids of Navier–Stokes–Allen–Cahn type</title><author>Kotschote, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4f78f28db0034ac168de718a7b9d4241b7d4b8f900645d63d4b5cea188d9ffd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotschote, Matthias</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotschote, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral analysis for travelling waves in compressible two-phase fluids of Navier–Stokes–Allen–Cahn type</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>17</volume><issue>1</issue><spage>359</spage><epage>385</epage><pages>359-385</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>This is the first part of two papers whose purpose is to investigate stability of travelling wave solutions to the so-called Navier–Stokes–Allen–Cahn system. This set of equations is a combination of the Navier–Stokes equations for compressible fluids supplemented with a phase field description of Allen–Cahn type. The main part of this work deals with studying the problem obtained by linearizing the NSAC system around so-called standing waves. The main results are (1) local well-posedness of the linearized equations and (2) a detailed description of the point and essential spectrum. As a by-product, we obtain analyticity of the associated semigroup.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00028-016-0380-0</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-3199 |
ispartof | Journal of evolution equations, 2017-03, Vol.17 (1), p.359-385 |
issn | 1424-3199 1424-3202 |
language | eng |
recordid | cdi_proquest_journals_1882812964 |
source | SpringerLink Journals |
subjects | Analysis Mathematics Mathematics and Statistics Navier-Stokes equations |
title | Spectral analysis for travelling waves in compressible two-phase fluids of Navier–Stokes–Allen–Cahn type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20analysis%20for%20travelling%20waves%20in%20compressible%20two-phase%20fluids%20of%20Navier%E2%80%93Stokes%E2%80%93Allen%E2%80%93Cahn%20type&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Kotschote,%20Matthias&rft.date=2017-03-01&rft.volume=17&rft.issue=1&rft.spage=359&rft.epage=385&rft.pages=359-385&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-016-0380-0&rft_dat=%3Cproquest_cross%3E1882812964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882812964&rft_id=info:pmid/&rfr_iscdi=true |