Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm

In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time ( t R ) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromatographia 2017-04, Vol.80 (4), p.629-636
Hauptverfasser: Bahmani, Asrin, Saaidpour, Saadi, Rostami, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 4
container_start_page 629
container_title Chromatographia
container_volume 80
creator Bahmani, Asrin
Saaidpour, Saadi
Rostami, Amin
description In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time ( t R ) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm, the most relevant descriptors were selected to build the QSRR model. The selected descriptors were: Hosoya Index, kappa1, and most negative potential. The prediction results from the BP-ANN were in good agreement with the experimental values. The optimal QSRR model was developed based on a 3-3-1 artificial neural network architecture using molecular descriptors calculated from molecular structure alone. The root-mean-square error (RMSE) and squared correlation coefficient ( R 2 ) for the ANN model were 0.3996 and 0.9559 for the training set (42 molecules) and 0.6052 and 0.9540 for the prediction set (15 molecules), respectively.
doi_str_mv 10.1007/s10337-017-3273-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1882812960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1882812960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3c1d3c726385b417e00a48f8e6e67e5f4120f1c8486a8c751ad870682c377eb93</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi1EJULLA3CzxNngsbNr51gFSCsFVfQPV8v1zmZdbeyt7a3UG-_AnYfjSXAIBy6cZkbzfb-R5iPkLfD3wLn6kIFLqRgHxaRQkqkXZAEtCAYA4iVZcM5XrNEr-Yq8zvmhjmLVtgvy8-tsQ_HFFv-E9Kak2ZU54a_vP66xYN3EQK9xtIcmD36iX2KHow87Gvvap2nwAakNHb0smX7E5J_-oDKtxqtvDOg6jvM-UB_oxubK3frH2Xd0PaS4tyXukp2GZ3qXD8wNBize0fNxF5Mvw_6MnPR2zPjmbz0ld58_3a4v2PZqc7k-3zInG1mYdNBJp0QrdXO_BIWc26XuNbbYKmz6JQjeg9NL3VrtVAO204q3WjipFN6v5Cl5d-ROKT7OmIt5iHMK9aQBrYWG-i1eVXBUuRRzTtibKfm9Tc8GuDnEYI4xmBqDOcRgVPWIoydXbdhh-of8X9NvZAGOfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882812960</pqid></control><display><type>article</type><title>Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm</title><source>SpringerLink Journals</source><creator>Bahmani, Asrin ; Saaidpour, Saadi ; Rostami, Amin</creator><creatorcontrib>Bahmani, Asrin ; Saaidpour, Saadi ; Rostami, Amin</creatorcontrib><description>In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time ( t R ) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm, the most relevant descriptors were selected to build the QSRR model. The selected descriptors were: Hosoya Index, kappa1, and most negative potential. The prediction results from the BP-ANN were in good agreement with the experimental values. The optimal QSRR model was developed based on a 3-3-1 artificial neural network architecture using molecular descriptors calculated from molecular structure alone. The root-mean-square error (RMSE) and squared correlation coefficient ( R 2 ) for the ANN model were 0.3996 and 0.9559 for the training set (42 molecules) and 0.6052 and 0.9540 for the prediction set (15 molecules), respectively.</description><identifier>ISSN: 0009-5893</identifier><identifier>EISSN: 1612-1112</identifier><identifier>DOI: 10.1007/s10337-017-3273-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Artificial neural networks ; Back propagation networks ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Column chromatography ; Columnar structure ; Correlation coefficients ; Genetic algorithms ; Laboratory Medicine ; Liquid chromatography ; Modelling ; Molecular structure ; Morphine ; Original ; Pharmacy ; Proteomics ; Root-mean-square errors</subject><ispartof>Chromatographia, 2017-04, Vol.80 (4), p.629-636</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3c1d3c726385b417e00a48f8e6e67e5f4120f1c8486a8c751ad870682c377eb93</citedby><cites>FETCH-LOGICAL-c353t-3c1d3c726385b417e00a48f8e6e67e5f4120f1c8486a8c751ad870682c377eb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10337-017-3273-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10337-017-3273-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bahmani, Asrin</creatorcontrib><creatorcontrib>Saaidpour, Saadi</creatorcontrib><creatorcontrib>Rostami, Amin</creatorcontrib><title>Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm</title><title>Chromatographia</title><addtitle>Chromatographia</addtitle><description>In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time ( t R ) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm, the most relevant descriptors were selected to build the QSRR model. The selected descriptors were: Hosoya Index, kappa1, and most negative potential. The prediction results from the BP-ANN were in good agreement with the experimental values. The optimal QSRR model was developed based on a 3-3-1 artificial neural network architecture using molecular descriptors calculated from molecular structure alone. The root-mean-square error (RMSE) and squared correlation coefficient ( R 2 ) for the ANN model were 0.3996 and 0.9559 for the training set (42 molecules) and 0.6052 and 0.9540 for the prediction set (15 molecules), respectively.</description><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Column chromatography</subject><subject>Columnar structure</subject><subject>Correlation coefficients</subject><subject>Genetic algorithms</subject><subject>Laboratory Medicine</subject><subject>Liquid chromatography</subject><subject>Modelling</subject><subject>Molecular structure</subject><subject>Morphine</subject><subject>Original</subject><subject>Pharmacy</subject><subject>Proteomics</subject><subject>Root-mean-square errors</subject><issn>0009-5893</issn><issn>1612-1112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc9uEzEQxi1EJULLA3CzxNngsbNr51gFSCsFVfQPV8v1zmZdbeyt7a3UG-_AnYfjSXAIBy6cZkbzfb-R5iPkLfD3wLn6kIFLqRgHxaRQkqkXZAEtCAYA4iVZcM5XrNEr-Yq8zvmhjmLVtgvy8-tsQ_HFFv-E9Kak2ZU54a_vP66xYN3EQK9xtIcmD36iX2KHow87Gvvap2nwAakNHb0smX7E5J_-oDKtxqtvDOg6jvM-UB_oxubK3frH2Xd0PaS4tyXukp2GZ3qXD8wNBize0fNxF5Mvw_6MnPR2zPjmbz0ld58_3a4v2PZqc7k-3zInG1mYdNBJp0QrdXO_BIWc26XuNbbYKmz6JQjeg9NL3VrtVAO204q3WjipFN6v5Cl5d-ROKT7OmIt5iHMK9aQBrYWG-i1eVXBUuRRzTtibKfm9Tc8GuDnEYI4xmBqDOcRgVPWIoydXbdhh-of8X9NvZAGOfw</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Bahmani, Asrin</creator><creator>Saaidpour, Saadi</creator><creator>Rostami, Amin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm</title><author>Bahmani, Asrin ; Saaidpour, Saadi ; Rostami, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3c1d3c726385b417e00a48f8e6e67e5f4120f1c8486a8c751ad870682c377eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Column chromatography</topic><topic>Columnar structure</topic><topic>Correlation coefficients</topic><topic>Genetic algorithms</topic><topic>Laboratory Medicine</topic><topic>Liquid chromatography</topic><topic>Modelling</topic><topic>Molecular structure</topic><topic>Morphine</topic><topic>Original</topic><topic>Pharmacy</topic><topic>Proteomics</topic><topic>Root-mean-square errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahmani, Asrin</creatorcontrib><creatorcontrib>Saaidpour, Saadi</creatorcontrib><creatorcontrib>Rostami, Amin</creatorcontrib><collection>CrossRef</collection><jtitle>Chromatographia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahmani, Asrin</au><au>Saaidpour, Saadi</au><au>Rostami, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm</atitle><jtitle>Chromatographia</jtitle><stitle>Chromatographia</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>80</volume><issue>4</issue><spage>629</spage><epage>636</epage><pages>629-636</pages><issn>0009-5893</issn><eissn>1612-1112</eissn><abstract>In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time ( t R ) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm, the most relevant descriptors were selected to build the QSRR model. The selected descriptors were: Hosoya Index, kappa1, and most negative potential. The prediction results from the BP-ANN were in good agreement with the experimental values. The optimal QSRR model was developed based on a 3-3-1 artificial neural network architecture using molecular descriptors calculated from molecular structure alone. The root-mean-square error (RMSE) and squared correlation coefficient ( R 2 ) for the ANN model were 0.3996 and 0.9559 for the training set (42 molecules) and 0.6052 and 0.9540 for the prediction set (15 molecules), respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10337-017-3273-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-5893
ispartof Chromatographia, 2017-04, Vol.80 (4), p.629-636
issn 0009-5893
1612-1112
language eng
recordid cdi_proquest_journals_1882812960
source SpringerLink Journals
subjects Analytical Chemistry
Artificial neural networks
Back propagation networks
Chemistry
Chemistry and Materials Science
Chromatography
Column chromatography
Columnar structure
Correlation coefficients
Genetic algorithms
Laboratory Medicine
Liquid chromatography
Modelling
Molecular structure
Morphine
Original
Pharmacy
Proteomics
Root-mean-square errors
title Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Structure%E2%80%93Retention%20Relationship%20Modeling%20of%20Morphine%20and%20Its%20Derivatives%20on%20OV-1%20Column%20in%20Gas%E2%80%93Liquid%20Chromatography%20Using%20Genetic%20Algorithm&rft.jtitle=Chromatographia&rft.au=Bahmani,%20Asrin&rft.date=2017-04-01&rft.volume=80&rft.issue=4&rft.spage=629&rft.epage=636&rft.pages=629-636&rft.issn=0009-5893&rft.eissn=1612-1112&rft_id=info:doi/10.1007/s10337-017-3273-7&rft_dat=%3Cproquest_cross%3E1882812960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882812960&rft_id=info:pmid/&rfr_iscdi=true