Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm
In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time ( t R ) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm,...
Gespeichert in:
Veröffentlicht in: | Chromatographia 2017-04, Vol.80 (4), p.629-636 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 636 |
---|---|
container_issue | 4 |
container_start_page | 629 |
container_title | Chromatographia |
container_volume | 80 |
creator | Bahmani, Asrin Saaidpour, Saadi Rostami, Amin |
description | In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time (
t
R
) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm, the most relevant descriptors were selected to build the QSRR model. The selected descriptors were: Hosoya Index, kappa1, and most negative potential. The prediction results from the BP-ANN were in good agreement with the experimental values. The optimal QSRR model was developed based on a 3-3-1 artificial neural network architecture using molecular descriptors calculated from molecular structure alone. The root-mean-square error (RMSE) and squared correlation coefficient (
R
2
) for the ANN model were 0.3996 and 0.9559 for the training set (42 molecules) and 0.6052 and 0.9540 for the prediction set (15 molecules), respectively. |
doi_str_mv | 10.1007/s10337-017-3273-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1882812960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1882812960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3c1d3c726385b417e00a48f8e6e67e5f4120f1c8486a8c751ad870682c377eb93</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi1EJULLA3CzxNngsbNr51gFSCsFVfQPV8v1zmZdbeyt7a3UG-_AnYfjSXAIBy6cZkbzfb-R5iPkLfD3wLn6kIFLqRgHxaRQkqkXZAEtCAYA4iVZcM5XrNEr-Yq8zvmhjmLVtgvy8-tsQ_HFFv-E9Kak2ZU54a_vP66xYN3EQK9xtIcmD36iX2KHow87Gvvap2nwAakNHb0smX7E5J_-oDKtxqtvDOg6jvM-UB_oxubK3frH2Xd0PaS4tyXukp2GZ3qXD8wNBize0fNxF5Mvw_6MnPR2zPjmbz0ld58_3a4v2PZqc7k-3zInG1mYdNBJp0QrdXO_BIWc26XuNbbYKmz6JQjeg9NL3VrtVAO204q3WjipFN6v5Cl5d-ROKT7OmIt5iHMK9aQBrYWG-i1eVXBUuRRzTtibKfm9Tc8GuDnEYI4xmBqDOcRgVPWIoydXbdhh-of8X9NvZAGOfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882812960</pqid></control><display><type>article</type><title>Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm</title><source>SpringerLink Journals</source><creator>Bahmani, Asrin ; Saaidpour, Saadi ; Rostami, Amin</creator><creatorcontrib>Bahmani, Asrin ; Saaidpour, Saadi ; Rostami, Amin</creatorcontrib><description>In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time (
t
R
) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm, the most relevant descriptors were selected to build the QSRR model. The selected descriptors were: Hosoya Index, kappa1, and most negative potential. The prediction results from the BP-ANN were in good agreement with the experimental values. The optimal QSRR model was developed based on a 3-3-1 artificial neural network architecture using molecular descriptors calculated from molecular structure alone. The root-mean-square error (RMSE) and squared correlation coefficient (
R
2
) for the ANN model were 0.3996 and 0.9559 for the training set (42 molecules) and 0.6052 and 0.9540 for the prediction set (15 molecules), respectively.</description><identifier>ISSN: 0009-5893</identifier><identifier>EISSN: 1612-1112</identifier><identifier>DOI: 10.1007/s10337-017-3273-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Artificial neural networks ; Back propagation networks ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Column chromatography ; Columnar structure ; Correlation coefficients ; Genetic algorithms ; Laboratory Medicine ; Liquid chromatography ; Modelling ; Molecular structure ; Morphine ; Original ; Pharmacy ; Proteomics ; Root-mean-square errors</subject><ispartof>Chromatographia, 2017-04, Vol.80 (4), p.629-636</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3c1d3c726385b417e00a48f8e6e67e5f4120f1c8486a8c751ad870682c377eb93</citedby><cites>FETCH-LOGICAL-c353t-3c1d3c726385b417e00a48f8e6e67e5f4120f1c8486a8c751ad870682c377eb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10337-017-3273-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10337-017-3273-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bahmani, Asrin</creatorcontrib><creatorcontrib>Saaidpour, Saadi</creatorcontrib><creatorcontrib>Rostami, Amin</creatorcontrib><title>Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm</title><title>Chromatographia</title><addtitle>Chromatographia</addtitle><description>In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time (
t
R
) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm, the most relevant descriptors were selected to build the QSRR model. The selected descriptors were: Hosoya Index, kappa1, and most negative potential. The prediction results from the BP-ANN were in good agreement with the experimental values. The optimal QSRR model was developed based on a 3-3-1 artificial neural network architecture using molecular descriptors calculated from molecular structure alone. The root-mean-square error (RMSE) and squared correlation coefficient (
R
2
) for the ANN model were 0.3996 and 0.9559 for the training set (42 molecules) and 0.6052 and 0.9540 for the prediction set (15 molecules), respectively.</description><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Column chromatography</subject><subject>Columnar structure</subject><subject>Correlation coefficients</subject><subject>Genetic algorithms</subject><subject>Laboratory Medicine</subject><subject>Liquid chromatography</subject><subject>Modelling</subject><subject>Molecular structure</subject><subject>Morphine</subject><subject>Original</subject><subject>Pharmacy</subject><subject>Proteomics</subject><subject>Root-mean-square errors</subject><issn>0009-5893</issn><issn>1612-1112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc9uEzEQxi1EJULLA3CzxNngsbNr51gFSCsFVfQPV8v1zmZdbeyt7a3UG-_AnYfjSXAIBy6cZkbzfb-R5iPkLfD3wLn6kIFLqRgHxaRQkqkXZAEtCAYA4iVZcM5XrNEr-Yq8zvmhjmLVtgvy8-tsQ_HFFv-E9Kak2ZU54a_vP66xYN3EQK9xtIcmD36iX2KHow87Gvvap2nwAakNHb0smX7E5J_-oDKtxqtvDOg6jvM-UB_oxubK3frH2Xd0PaS4tyXukp2GZ3qXD8wNBize0fNxF5Mvw_6MnPR2zPjmbz0ld58_3a4v2PZqc7k-3zInG1mYdNBJp0QrdXO_BIWc26XuNbbYKmz6JQjeg9NL3VrtVAO204q3WjipFN6v5Cl5d-ROKT7OmIt5iHMK9aQBrYWG-i1eVXBUuRRzTtibKfm9Tc8GuDnEYI4xmBqDOcRgVPWIoydXbdhh-of8X9NvZAGOfw</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Bahmani, Asrin</creator><creator>Saaidpour, Saadi</creator><creator>Rostami, Amin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm</title><author>Bahmani, Asrin ; Saaidpour, Saadi ; Rostami, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3c1d3c726385b417e00a48f8e6e67e5f4120f1c8486a8c751ad870682c377eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Column chromatography</topic><topic>Columnar structure</topic><topic>Correlation coefficients</topic><topic>Genetic algorithms</topic><topic>Laboratory Medicine</topic><topic>Liquid chromatography</topic><topic>Modelling</topic><topic>Molecular structure</topic><topic>Morphine</topic><topic>Original</topic><topic>Pharmacy</topic><topic>Proteomics</topic><topic>Root-mean-square errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahmani, Asrin</creatorcontrib><creatorcontrib>Saaidpour, Saadi</creatorcontrib><creatorcontrib>Rostami, Amin</creatorcontrib><collection>CrossRef</collection><jtitle>Chromatographia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahmani, Asrin</au><au>Saaidpour, Saadi</au><au>Rostami, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm</atitle><jtitle>Chromatographia</jtitle><stitle>Chromatographia</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>80</volume><issue>4</issue><spage>629</spage><epage>636</epage><pages>629-636</pages><issn>0009-5893</issn><eissn>1612-1112</eissn><abstract>In this paper, a back propagation artificial neural network (BP-ANN) was used for quantitative structure–retention relationship (QSRR) modeling of retention time (
t
R
) of 57 morphine and its derivatives. The molecular descriptors were calculated for each compound. By applying a genetic algorithm, the most relevant descriptors were selected to build the QSRR model. The selected descriptors were: Hosoya Index, kappa1, and most negative potential. The prediction results from the BP-ANN were in good agreement with the experimental values. The optimal QSRR model was developed based on a 3-3-1 artificial neural network architecture using molecular descriptors calculated from molecular structure alone. The root-mean-square error (RMSE) and squared correlation coefficient (
R
2
) for the ANN model were 0.3996 and 0.9559 for the training set (42 molecules) and 0.6052 and 0.9540 for the prediction set (15 molecules), respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10337-017-3273-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-5893 |
ispartof | Chromatographia, 2017-04, Vol.80 (4), p.629-636 |
issn | 0009-5893 1612-1112 |
language | eng |
recordid | cdi_proquest_journals_1882812960 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Artificial neural networks Back propagation networks Chemistry Chemistry and Materials Science Chromatography Column chromatography Columnar structure Correlation coefficients Genetic algorithms Laboratory Medicine Liquid chromatography Modelling Molecular structure Morphine Original Pharmacy Proteomics Root-mean-square errors |
title | Quantitative Structure–Retention Relationship Modeling of Morphine and Its Derivatives on OV-1 Column in Gas–Liquid Chromatography Using Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Structure%E2%80%93Retention%20Relationship%20Modeling%20of%20Morphine%20and%20Its%20Derivatives%20on%20OV-1%20Column%20in%20Gas%E2%80%93Liquid%20Chromatography%20Using%20Genetic%20Algorithm&rft.jtitle=Chromatographia&rft.au=Bahmani,%20Asrin&rft.date=2017-04-01&rft.volume=80&rft.issue=4&rft.spage=629&rft.epage=636&rft.pages=629-636&rft.issn=0009-5893&rft.eissn=1612-1112&rft_id=info:doi/10.1007/s10337-017-3273-7&rft_dat=%3Cproquest_cross%3E1882812960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882812960&rft_id=info:pmid/&rfr_iscdi=true |