Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability

We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2017-03, Vol.59 (11), p.1930-1936
Hauptverfasser: Kaparulin, D. S., Karataeva, I. Yu, Lyakhovich, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1936
container_issue 11
container_start_page 1930
container_title Russian physics journal
container_volume 59
creator Kaparulin, D. S.
Karataeva, I. Yu
Lyakhovich, S. L.
description We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model.
doi_str_mv 10.1007/s11182-017-0997-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1882590305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498317057</galeid><sourcerecordid>A498317057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b7ac4cf41bf584d64dcfcfcd803eb0205a7194dfe760ad6c36868a45d1f16b403</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHeTuHXqZYYZGHdNU3-SJi5al4YwDLTTtFCBqt35Dr6hTyKTceHG3AS4N98BchC6xDDCAPTGY4xZlgKmKVQVTekRGuCC5mmVZew4nqEkKWOMnqIz79cAkSrpAL1MP4IyvrUmsToJK5VMVsqZ78-vebu1xieLlbLucJtMYqPcmwhddCbe_XVcl06YpUrmwe1l2DsVh8I0sRd1u2nD4RydaLHx6uJ3H6Lnu-li8pDOnu4fJ-NZKvOiCGlNhSRSE1zrgpGmJI3UsRoGuaohg0JQXJFGK1qCaEqZl6xkghQN1risCeRDdNXfu3P2da984Gu7dyY-yTFjWVFBDkVMjfrUUmwUb422wQkZq1HbVlqjdBvnY1KxHFOI8oYI94B01nunNN-5divcgWPgnXbea-dRO--0847JesbHbJTj_nzlX-gHH9KGdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882590305</pqid></control><display><type>article</type><title>Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability</title><source>Springer Nature - Complete Springer Journals</source><creator>Kaparulin, D. S. ; Karataeva, I. Yu ; Lyakhovich, S. L.</creator><creatorcontrib>Kaparulin, D. S. ; Karataeva, I. Yu ; Lyakhovich, S. L.</creatorcontrib><description>We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-017-0997-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Condensed Matter Physics ; Conservation laws ; Energy conservation ; Environmental law ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Structural stability ; Theoretical ; Translations</subject><ispartof>Russian physics journal, 2017-03, Vol.59 (11), p.1930-1936</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b7ac4cf41bf584d64dcfcfcd803eb0205a7194dfe760ad6c36868a45d1f16b403</citedby><cites>FETCH-LOGICAL-c355t-b7ac4cf41bf584d64dcfcfcd803eb0205a7194dfe760ad6c36868a45d1f16b403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-017-0997-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-017-0997-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kaparulin, D. S.</creatorcontrib><creatorcontrib>Karataeva, I. Yu</creatorcontrib><creatorcontrib>Lyakhovich, S. L.</creatorcontrib><title>Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model.</description><subject>Analysis</subject><subject>Condensed Matter Physics</subject><subject>Conservation laws</subject><subject>Energy conservation</subject><subject>Environmental law</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Structural stability</subject><subject>Theoretical</subject><subject>Translations</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEURonRxFp9AHeTuHXqZYYZGHdNU3-SJi5al4YwDLTTtFCBqt35Dr6hTyKTceHG3AS4N98BchC6xDDCAPTGY4xZlgKmKVQVTekRGuCC5mmVZew4nqEkKWOMnqIz79cAkSrpAL1MP4IyvrUmsToJK5VMVsqZ78-vebu1xieLlbLucJtMYqPcmwhddCbe_XVcl06YpUrmwe1l2DsVh8I0sRd1u2nD4RydaLHx6uJ3H6Lnu-li8pDOnu4fJ-NZKvOiCGlNhSRSE1zrgpGmJI3UsRoGuaohg0JQXJFGK1qCaEqZl6xkghQN1risCeRDdNXfu3P2da984Gu7dyY-yTFjWVFBDkVMjfrUUmwUb422wQkZq1HbVlqjdBvnY1KxHFOI8oYI94B01nunNN-5divcgWPgnXbea-dRO--0847JesbHbJTj_nzlX-gHH9KGdg</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Kaparulin, D. S.</creator><creator>Karataeva, I. Yu</creator><creator>Lyakhovich, S. L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability</title><author>Kaparulin, D. S. ; Karataeva, I. Yu ; Lyakhovich, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b7ac4cf41bf584d64dcfcfcd803eb0205a7194dfe760ad6c36868a45d1f16b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Condensed Matter Physics</topic><topic>Conservation laws</topic><topic>Energy conservation</topic><topic>Environmental law</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Structural stability</topic><topic>Theoretical</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaparulin, D. S.</creatorcontrib><creatorcontrib>Karataeva, I. Yu</creatorcontrib><creatorcontrib>Lyakhovich, S. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaparulin, D. S.</au><au>Karataeva, I. Yu</au><au>Lyakhovich, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>59</volume><issue>11</issue><spage>1930</spage><epage>1936</epage><pages>1930-1936</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-017-0997-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2017-03, Vol.59 (11), p.1930-1936
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_1882590305
source Springer Nature - Complete Springer Journals
subjects Analysis
Condensed Matter Physics
Conservation laws
Energy conservation
Environmental law
Hadrons
Heavy Ions
Lasers
Mathematical and Computational Physics
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Structural stability
Theoretical
Translations
title Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20the%20Chern%E2%80%93Simons%20Theory:%20Conservation%20Laws,%20Lagrange%20Structures,%20and%20Stability&rft.jtitle=Russian%20physics%20journal&rft.au=Kaparulin,%20D.%20S.&rft.date=2017-03-01&rft.volume=59&rft.issue=11&rft.spage=1930&rft.epage=1936&rft.pages=1930-1936&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-017-0997-7&rft_dat=%3Cgale_proqu%3EA498317057%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882590305&rft_id=info:pmid/&rft_galeid=A498317057&rfr_iscdi=true