Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability
We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal sy...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2017-03, Vol.59 (11), p.1930-1936 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1936 |
---|---|
container_issue | 11 |
container_start_page | 1930 |
container_title | Russian physics journal |
container_volume | 59 |
creator | Kaparulin, D. S. Karataeva, I. Yu Lyakhovich, S. L. |
description | We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model. |
doi_str_mv | 10.1007/s11182-017-0997-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1882590305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498317057</galeid><sourcerecordid>A498317057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b7ac4cf41bf584d64dcfcfcd803eb0205a7194dfe760ad6c36868a45d1f16b403</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHeTuHXqZYYZGHdNU3-SJi5al4YwDLTTtFCBqt35Dr6hTyKTceHG3AS4N98BchC6xDDCAPTGY4xZlgKmKVQVTekRGuCC5mmVZew4nqEkKWOMnqIz79cAkSrpAL1MP4IyvrUmsToJK5VMVsqZ78-vebu1xieLlbLucJtMYqPcmwhddCbe_XVcl06YpUrmwe1l2DsVh8I0sRd1u2nD4RydaLHx6uJ3H6Lnu-li8pDOnu4fJ-NZKvOiCGlNhSRSE1zrgpGmJI3UsRoGuaohg0JQXJFGK1qCaEqZl6xkghQN1risCeRDdNXfu3P2da984Gu7dyY-yTFjWVFBDkVMjfrUUmwUb422wQkZq1HbVlqjdBvnY1KxHFOI8oYI94B01nunNN-5divcgWPgnXbea-dRO--0847JesbHbJTj_nzlX-gHH9KGdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882590305</pqid></control><display><type>article</type><title>Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability</title><source>Springer Nature - Complete Springer Journals</source><creator>Kaparulin, D. S. ; Karataeva, I. Yu ; Lyakhovich, S. L.</creator><creatorcontrib>Kaparulin, D. S. ; Karataeva, I. Yu ; Lyakhovich, S. L.</creatorcontrib><description>We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-017-0997-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Condensed Matter Physics ; Conservation laws ; Energy conservation ; Environmental law ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Structural stability ; Theoretical ; Translations</subject><ispartof>Russian physics journal, 2017-03, Vol.59 (11), p.1930-1936</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b7ac4cf41bf584d64dcfcfcd803eb0205a7194dfe760ad6c36868a45d1f16b403</citedby><cites>FETCH-LOGICAL-c355t-b7ac4cf41bf584d64dcfcfcd803eb0205a7194dfe760ad6c36868a45d1f16b403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-017-0997-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-017-0997-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kaparulin, D. S.</creatorcontrib><creatorcontrib>Karataeva, I. Yu</creatorcontrib><creatorcontrib>Lyakhovich, S. L.</creatorcontrib><title>Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model.</description><subject>Analysis</subject><subject>Condensed Matter Physics</subject><subject>Conservation laws</subject><subject>Energy conservation</subject><subject>Environmental law</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Structural stability</subject><subject>Theoretical</subject><subject>Translations</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEURonRxFp9AHeTuHXqZYYZGHdNU3-SJi5al4YwDLTTtFCBqt35Dr6hTyKTceHG3AS4N98BchC6xDDCAPTGY4xZlgKmKVQVTekRGuCC5mmVZew4nqEkKWOMnqIz79cAkSrpAL1MP4IyvrUmsToJK5VMVsqZ78-vebu1xieLlbLucJtMYqPcmwhddCbe_XVcl06YpUrmwe1l2DsVh8I0sRd1u2nD4RydaLHx6uJ3H6Lnu-li8pDOnu4fJ-NZKvOiCGlNhSRSE1zrgpGmJI3UsRoGuaohg0JQXJFGK1qCaEqZl6xkghQN1risCeRDdNXfu3P2da984Gu7dyY-yTFjWVFBDkVMjfrUUmwUb422wQkZq1HbVlqjdBvnY1KxHFOI8oYI94B01nunNN-5divcgWPgnXbea-dRO--0847JesbHbJTj_nzlX-gHH9KGdg</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Kaparulin, D. S.</creator><creator>Karataeva, I. Yu</creator><creator>Lyakhovich, S. L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability</title><author>Kaparulin, D. S. ; Karataeva, I. Yu ; Lyakhovich, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b7ac4cf41bf584d64dcfcfcd803eb0205a7194dfe760ad6c36868a45d1f16b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Condensed Matter Physics</topic><topic>Conservation laws</topic><topic>Energy conservation</topic><topic>Environmental law</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Structural stability</topic><topic>Theoretical</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaparulin, D. S.</creatorcontrib><creatorcontrib>Karataeva, I. Yu</creatorcontrib><creatorcontrib>Lyakhovich, S. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaparulin, D. S.</au><au>Karataeva, I. Yu</au><au>Lyakhovich, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>59</volume><issue>11</issue><spage>1930</spage><epage>1936</epage><pages>1930-1936</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern–Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-017-0997-7</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2017-03, Vol.59 (11), p.1930-1936 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_1882590305 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Condensed Matter Physics Conservation laws Energy conservation Environmental law Hadrons Heavy Ions Lasers Mathematical and Computational Physics Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Structural stability Theoretical Translations |
title | Extension of the Chern–Simons Theory: Conservation Laws, Lagrange Structures, and Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20the%20Chern%E2%80%93Simons%20Theory:%20Conservation%20Laws,%20Lagrange%20Structures,%20and%20Stability&rft.jtitle=Russian%20physics%20journal&rft.au=Kaparulin,%20D.%20S.&rft.date=2017-03-01&rft.volume=59&rft.issue=11&rft.spage=1930&rft.epage=1936&rft.pages=1930-1936&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-017-0997-7&rft_dat=%3Cgale_proqu%3EA498317057%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882590305&rft_id=info:pmid/&rft_galeid=A498317057&rfr_iscdi=true |