Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)

In this study we investigate long‐term variations in the stratospheric age spectra using a 21st century simulation with the Goddard Earth Observing System Chemistry‐Climate Model (GEOSCCM). Our purposes are to characterize the long‐term changes in the age spectra, and identify processes that cause t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2012-10, Vol.117 (D20), p.n/a
Hauptverfasser: Li, Feng, Waugh, Darryn W., Douglass, Anne R., Newman, Paul A., Strahan, Susan E., Ma, Jun, Nielsen, J. Eric, Liang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D20
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 117
creator Li, Feng
Waugh, Darryn W.
Douglass, Anne R.
Newman, Paul A.
Strahan, Susan E.
Ma, Jun
Nielsen, J. Eric
Liang, Qing
description In this study we investigate long‐term variations in the stratospheric age spectra using a 21st century simulation with the Goddard Earth Observing System Chemistry‐Climate Model (GEOSCCM). Our purposes are to characterize the long‐term changes in the age spectra, and identify processes that cause the decrease of the mean age in a changing climate. Changes in the age spectra in the 21st century simulation are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale throughout the stratosphere. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to a decrease of the tail of the age spectra and a decrease of the old air masses. Weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the mean age. Long‐term changes in the stratospheric isentropic mixing are also investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is smaller than the increase of the residual circulation. The impacts of the long‐term changes in the age spectra on long‐lived chemical tracers are also investigated. Key Points Long‐term changes in age spectra are characterized Processes that cause the decrease of the mean age are identified Long‐term changes in isentropic mixing are investigated
doi_str_mv 10.1029/2012JD017905
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1882086643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321290773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4799-1f1cafdaa75f0ecc7a1084f998c208f331050413845251eae8baf945bceed0673</originalsourceid><addsrcrecordid>eNp9kNFu0zAUhi0EEtXYHQ9gCSGBRMB27Ni5ZGnJmFoqMRCXluscNxlp0tkuW16Bp8ZVx8QVvrF0_P2f7R-hl5S8p4SVHxih7GpOqCyJeIJmjIoiY4ywp2hGKFcZYUw-R-ch3JC0uCg4oTP0ezkO2yyC32HbmmELAXcDDtGbOIZ9C76z2GwBhz3YNDwexhYwoyFiC0M8-OnvrB6bxvgGL4yPLV5vAvhf3bDF11OIsMNVC7suiaes6rudiYBXYwM9flMv1tdVtXr7Aj1zpg9w_rCfoe-fFt-qy2y5rj9XH5eZ5bIsM-qoNa4xRgpHwFppKFHclaWyjCiX55QIwmmuuGCCggG1Ma7kYmMBGlLI_Ay9Onn3frw9QIj6Zjz4IV2pqVLJURQ8T9S7E2X9GIIHp_c-PdtPmhJ9LFz_W3jCXz9ITbCmd94MtguPGVYUuVC8TFx-4u66Hqb_OvVV_XVOFVXHVHZKpQLh_jFl_E-dPiSF_vGl1nN5cSFXpNaX-R8eL5zL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882086643</pqid></control><display><type>article</type><title>Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Li, Feng ; Waugh, Darryn W. ; Douglass, Anne R. ; Newman, Paul A. ; Strahan, Susan E. ; Ma, Jun ; Nielsen, J. Eric ; Liang, Qing</creator><creatorcontrib>Li, Feng ; Waugh, Darryn W. ; Douglass, Anne R. ; Newman, Paul A. ; Strahan, Susan E. ; Ma, Jun ; Nielsen, J. Eric ; Liang, Qing</creatorcontrib><description>In this study we investigate long‐term variations in the stratospheric age spectra using a 21st century simulation with the Goddard Earth Observing System Chemistry‐Climate Model (GEOSCCM). Our purposes are to characterize the long‐term changes in the age spectra, and identify processes that cause the decrease of the mean age in a changing climate. Changes in the age spectra in the 21st century simulation are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale throughout the stratosphere. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to a decrease of the tail of the age spectra and a decrease of the old air masses. Weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the mean age. Long‐term changes in the stratospheric isentropic mixing are also investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is smaller than the increase of the residual circulation. The impacts of the long‐term changes in the age spectra on long‐lived chemical tracers are also investigated. Key Points Long‐term changes in age spectra are characterized Processes that cause the decrease of the mean age are identified Long‐term changes in isentropic mixing are investigated</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2012JD017905</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>21st century ; Age ; age spectrum ; Air masses ; Climate change ; Climate models ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; long-term change ; mean age ; residual circulation ; Stratosphere ; Studies</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2012-10, Vol.117 (D20), p.n/a</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4799-1f1cafdaa75f0ecc7a1084f998c208f331050413845251eae8baf945bceed0673</citedby><cites>FETCH-LOGICAL-c4799-1f1cafdaa75f0ecc7a1084f998c208f331050413845251eae8baf945bceed0673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JD017905$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JD017905$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11519,27929,27930,45579,45580,46414,46473,46838,46897</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26635849$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Waugh, Darryn W.</creatorcontrib><creatorcontrib>Douglass, Anne R.</creatorcontrib><creatorcontrib>Newman, Paul A.</creatorcontrib><creatorcontrib>Strahan, Susan E.</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Nielsen, J. Eric</creatorcontrib><creatorcontrib>Liang, Qing</creatorcontrib><title>Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>In this study we investigate long‐term variations in the stratospheric age spectra using a 21st century simulation with the Goddard Earth Observing System Chemistry‐Climate Model (GEOSCCM). Our purposes are to characterize the long‐term changes in the age spectra, and identify processes that cause the decrease of the mean age in a changing climate. Changes in the age spectra in the 21st century simulation are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale throughout the stratosphere. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to a decrease of the tail of the age spectra and a decrease of the old air masses. Weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the mean age. Long‐term changes in the stratospheric isentropic mixing are also investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is smaller than the increase of the residual circulation. The impacts of the long‐term changes in the age spectra on long‐lived chemical tracers are also investigated. Key Points Long‐term changes in age spectra are characterized Processes that cause the decrease of the mean age are identified Long‐term changes in isentropic mixing are investigated</description><subject>21st century</subject><subject>Age</subject><subject>age spectrum</subject><subject>Air masses</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>long-term change</subject><subject>mean age</subject><subject>residual circulation</subject><subject>Stratosphere</subject><subject>Studies</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kNFu0zAUhi0EEtXYHQ9gCSGBRMB27Ni5ZGnJmFoqMRCXluscNxlp0tkuW16Bp8ZVx8QVvrF0_P2f7R-hl5S8p4SVHxih7GpOqCyJeIJmjIoiY4ywp2hGKFcZYUw-R-ch3JC0uCg4oTP0ezkO2yyC32HbmmELAXcDDtGbOIZ9C76z2GwBhz3YNDwexhYwoyFiC0M8-OnvrB6bxvgGL4yPLV5vAvhf3bDF11OIsMNVC7suiaes6rudiYBXYwM9flMv1tdVtXr7Aj1zpg9w_rCfoe-fFt-qy2y5rj9XH5eZ5bIsM-qoNa4xRgpHwFppKFHclaWyjCiX55QIwmmuuGCCggG1Ma7kYmMBGlLI_Ay9Onn3frw9QIj6Zjz4IV2pqVLJURQ8T9S7E2X9GIIHp_c-PdtPmhJ9LFz_W3jCXz9ITbCmd94MtguPGVYUuVC8TFx-4u66Hqb_OvVV_XVOFVXHVHZKpQLh_jFl_E-dPiSF_vGl1nN5cSFXpNaX-R8eL5zL</recordid><startdate>20121027</startdate><enddate>20121027</enddate><creator>Li, Feng</creator><creator>Waugh, Darryn W.</creator><creator>Douglass, Anne R.</creator><creator>Newman, Paul A.</creator><creator>Strahan, Susan E.</creator><creator>Ma, Jun</creator><creator>Nielsen, J. Eric</creator><creator>Liang, Qing</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20121027</creationdate><title>Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)</title><author>Li, Feng ; Waugh, Darryn W. ; Douglass, Anne R. ; Newman, Paul A. ; Strahan, Susan E. ; Ma, Jun ; Nielsen, J. Eric ; Liang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4799-1f1cafdaa75f0ecc7a1084f998c208f331050413845251eae8baf945bceed0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>21st century</topic><topic>Age</topic><topic>age spectrum</topic><topic>Air masses</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>long-term change</topic><topic>mean age</topic><topic>residual circulation</topic><topic>Stratosphere</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Waugh, Darryn W.</creatorcontrib><creatorcontrib>Douglass, Anne R.</creatorcontrib><creatorcontrib>Newman, Paul A.</creatorcontrib><creatorcontrib>Strahan, Susan E.</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Nielsen, J. Eric</creatorcontrib><creatorcontrib>Liang, Qing</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Feng</au><au>Waugh, Darryn W.</au><au>Douglass, Anne R.</au><au>Newman, Paul A.</au><au>Strahan, Susan E.</au><au>Ma, Jun</au><au>Nielsen, J. Eric</au><au>Liang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-10-27</date><risdate>2012</risdate><volume>117</volume><issue>D20</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>In this study we investigate long‐term variations in the stratospheric age spectra using a 21st century simulation with the Goddard Earth Observing System Chemistry‐Climate Model (GEOSCCM). Our purposes are to characterize the long‐term changes in the age spectra, and identify processes that cause the decrease of the mean age in a changing climate. Changes in the age spectra in the 21st century simulation are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale throughout the stratosphere. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to a decrease of the tail of the age spectra and a decrease of the old air masses. Weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the mean age. Long‐term changes in the stratospheric isentropic mixing are also investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is smaller than the increase of the residual circulation. The impacts of the long‐term changes in the age spectra on long‐lived chemical tracers are also investigated. Key Points Long‐term changes in age spectra are characterized Processes that cause the decrease of the mean age are identified Long‐term changes in isentropic mixing are investigated</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JD017905</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2012-10, Vol.117 (D20), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_journals_1882086643
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Archive; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects 21st century
Age
age spectrum
Air masses
Climate change
Climate models
Earth
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
long-term change
mean age
residual circulation
Stratosphere
Studies
title Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20changes%20in%20stratospheric%20age%20spectra%20in%20the%2021st%20century%20in%20the%20Goddard%20Earth%20Observing%20System%20Chemistry-Climate%20Model%20(GEOSCCM)&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Li,%20Feng&rft.date=2012-10-27&rft.volume=117&rft.issue=D20&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2012JD017905&rft_dat=%3Cproquest_cross%3E4321290773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882086643&rft_id=info:pmid/&rfr_iscdi=true