Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf^sup -/-^ mouse model
Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactiva...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (12), p.3151 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 3151 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Chapeau, Emilie A Gembarska, Agnieszka Durand, Eric Y Mandon, Emeline Estadieu, Claire Romanet, Vincent Wiesmann, Marion Tiedt, Ralph Lehar, Joseph de Weck, Antoine Rad, Roland Barys, Louise Jeay, Sebastien Ferretti, Stephane Kauffmann, Audrey Sutter, Esther Grevot, Armelle Moulin, Pierre Murakami, Masato Sellers, William R Hofmann, Francesco Jensen, Michael Rugaard |
description | Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf^sup -/-^ mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1881974799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321283943</sourcerecordid><originalsourceid>FETCH-proquest_journals_18819747993</originalsourceid><addsrcrecordid>eNqNjctqwzAQRUVpoe7jHwa6FpUdp7aWfdJNoJSsExR77EyIR65GCuQT-td1oB-Q1V2cw7kXKsuNzfVTac2lyowpKl2XRXmtbkR2xhg7r02mfr9RSKLjBmHAZuuYZBCIHpZf85levC0KIN7ShiJ5BmqRI3WELWyOE4ADHTyM1PfHF9dADI5l9DKZQ4quRz7VQZqAyCfdMTyHbiVpBP2oVzD4JNOxb3F_p646txe8_99b9fDxvnz91GPwPwklrnc-BZ7QOq_r3FZlZe3sPOsP8LlUYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881974799</pqid></control><display><type>article</type><title>Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf^sup -/-^ mouse model</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chapeau, Emilie A ; Gembarska, Agnieszka ; Durand, Eric Y ; Mandon, Emeline ; Estadieu, Claire ; Romanet, Vincent ; Wiesmann, Marion ; Tiedt, Ralph ; Lehar, Joseph ; de Weck, Antoine ; Rad, Roland ; Barys, Louise ; Jeay, Sebastien ; Ferretti, Stephane ; Kauffmann, Audrey ; Sutter, Esther ; Grevot, Armelle ; Moulin, Pierre ; Murakami, Masato ; Sellers, William R ; Hofmann, Francesco ; Jensen, Michael Rugaard</creator><creatorcontrib>Chapeau, Emilie A ; Gembarska, Agnieszka ; Durand, Eric Y ; Mandon, Emeline ; Estadieu, Claire ; Romanet, Vincent ; Wiesmann, Marion ; Tiedt, Ralph ; Lehar, Joseph ; de Weck, Antoine ; Rad, Roland ; Barys, Louise ; Jeay, Sebastien ; Ferretti, Stephane ; Kauffmann, Audrey ; Sutter, Esther ; Grevot, Armelle ; Moulin, Pierre ; Murakami, Masato ; Sellers, William R ; Hofmann, Francesco ; Jensen, Michael Rugaard</creatorcontrib><description>Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf^sup -/-^ mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Drug resistance ; Genetics ; Mutagenesis ; Pharmacology ; Protein expression ; Rodents ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.3151</ispartof><rights>Copyright National Academy of Sciences Mar 21, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Chapeau, Emilie A</creatorcontrib><creatorcontrib>Gembarska, Agnieszka</creatorcontrib><creatorcontrib>Durand, Eric Y</creatorcontrib><creatorcontrib>Mandon, Emeline</creatorcontrib><creatorcontrib>Estadieu, Claire</creatorcontrib><creatorcontrib>Romanet, Vincent</creatorcontrib><creatorcontrib>Wiesmann, Marion</creatorcontrib><creatorcontrib>Tiedt, Ralph</creatorcontrib><creatorcontrib>Lehar, Joseph</creatorcontrib><creatorcontrib>de Weck, Antoine</creatorcontrib><creatorcontrib>Rad, Roland</creatorcontrib><creatorcontrib>Barys, Louise</creatorcontrib><creatorcontrib>Jeay, Sebastien</creatorcontrib><creatorcontrib>Ferretti, Stephane</creatorcontrib><creatorcontrib>Kauffmann, Audrey</creatorcontrib><creatorcontrib>Sutter, Esther</creatorcontrib><creatorcontrib>Grevot, Armelle</creatorcontrib><creatorcontrib>Moulin, Pierre</creatorcontrib><creatorcontrib>Murakami, Masato</creatorcontrib><creatorcontrib>Sellers, William R</creatorcontrib><creatorcontrib>Hofmann, Francesco</creatorcontrib><creatorcontrib>Jensen, Michael Rugaard</creatorcontrib><title>Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf^sup -/-^ mouse model</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf^sup -/-^ mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.</description><subject>Drug resistance</subject><subject>Genetics</subject><subject>Mutagenesis</subject><subject>Pharmacology</subject><subject>Protein expression</subject><subject>Rodents</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjctqwzAQRUVpoe7jHwa6FpUdp7aWfdJNoJSsExR77EyIR65GCuQT-td1oB-Q1V2cw7kXKsuNzfVTac2lyowpKl2XRXmtbkR2xhg7r02mfr9RSKLjBmHAZuuYZBCIHpZf85levC0KIN7ShiJ5BmqRI3WELWyOE4ADHTyM1PfHF9dADI5l9DKZQ4quRz7VQZqAyCfdMTyHbiVpBP2oVzD4JNOxb3F_p646txe8_99b9fDxvnz91GPwPwklrnc-BZ7QOq_r3FZlZe3sPOsP8LlUYA</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Chapeau, Emilie A</creator><creator>Gembarska, Agnieszka</creator><creator>Durand, Eric Y</creator><creator>Mandon, Emeline</creator><creator>Estadieu, Claire</creator><creator>Romanet, Vincent</creator><creator>Wiesmann, Marion</creator><creator>Tiedt, Ralph</creator><creator>Lehar, Joseph</creator><creator>de Weck, Antoine</creator><creator>Rad, Roland</creator><creator>Barys, Louise</creator><creator>Jeay, Sebastien</creator><creator>Ferretti, Stephane</creator><creator>Kauffmann, Audrey</creator><creator>Sutter, Esther</creator><creator>Grevot, Armelle</creator><creator>Moulin, Pierre</creator><creator>Murakami, Masato</creator><creator>Sellers, William R</creator><creator>Hofmann, Francesco</creator><creator>Jensen, Michael Rugaard</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20170321</creationdate><title>Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf^sup -/-^ mouse model</title><author>Chapeau, Emilie A ; Gembarska, Agnieszka ; Durand, Eric Y ; Mandon, Emeline ; Estadieu, Claire ; Romanet, Vincent ; Wiesmann, Marion ; Tiedt, Ralph ; Lehar, Joseph ; de Weck, Antoine ; Rad, Roland ; Barys, Louise ; Jeay, Sebastien ; Ferretti, Stephane ; Kauffmann, Audrey ; Sutter, Esther ; Grevot, Armelle ; Moulin, Pierre ; Murakami, Masato ; Sellers, William R ; Hofmann, Francesco ; Jensen, Michael Rugaard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_18819747993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Drug resistance</topic><topic>Genetics</topic><topic>Mutagenesis</topic><topic>Pharmacology</topic><topic>Protein expression</topic><topic>Rodents</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapeau, Emilie A</creatorcontrib><creatorcontrib>Gembarska, Agnieszka</creatorcontrib><creatorcontrib>Durand, Eric Y</creatorcontrib><creatorcontrib>Mandon, Emeline</creatorcontrib><creatorcontrib>Estadieu, Claire</creatorcontrib><creatorcontrib>Romanet, Vincent</creatorcontrib><creatorcontrib>Wiesmann, Marion</creatorcontrib><creatorcontrib>Tiedt, Ralph</creatorcontrib><creatorcontrib>Lehar, Joseph</creatorcontrib><creatorcontrib>de Weck, Antoine</creatorcontrib><creatorcontrib>Rad, Roland</creatorcontrib><creatorcontrib>Barys, Louise</creatorcontrib><creatorcontrib>Jeay, Sebastien</creatorcontrib><creatorcontrib>Ferretti, Stephane</creatorcontrib><creatorcontrib>Kauffmann, Audrey</creatorcontrib><creatorcontrib>Sutter, Esther</creatorcontrib><creatorcontrib>Grevot, Armelle</creatorcontrib><creatorcontrib>Moulin, Pierre</creatorcontrib><creatorcontrib>Murakami, Masato</creatorcontrib><creatorcontrib>Sellers, William R</creatorcontrib><creatorcontrib>Hofmann, Francesco</creatorcontrib><creatorcontrib>Jensen, Michael Rugaard</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapeau, Emilie A</au><au>Gembarska, Agnieszka</au><au>Durand, Eric Y</au><au>Mandon, Emeline</au><au>Estadieu, Claire</au><au>Romanet, Vincent</au><au>Wiesmann, Marion</au><au>Tiedt, Ralph</au><au>Lehar, Joseph</au><au>de Weck, Antoine</au><au>Rad, Roland</au><au>Barys, Louise</au><au>Jeay, Sebastien</au><au>Ferretti, Stephane</au><au>Kauffmann, Audrey</au><au>Sutter, Esther</au><au>Grevot, Armelle</au><au>Moulin, Pierre</au><au>Murakami, Masato</au><au>Sellers, William R</au><au>Hofmann, Francesco</au><au>Jensen, Michael Rugaard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf^sup -/-^ mouse model</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2017-03-21</date><risdate>2017</risdate><volume>114</volume><issue>12</issue><spage>3151</spage><pages>3151-</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf^sup -/-^ mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.3151 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1881974799 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Drug resistance Genetics Mutagenesis Pharmacology Protein expression Rodents Tumors |
title | Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf^sup -/-^ mouse model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20mechanisms%20to%20TP53-MDM2%20inhibition%20identified%20by%20in%20vivo%20piggyBac%20transposon%20mutagenesis%20screen%20in%20an%20Arf%5Esup%20-/-%5E%20mouse%20model&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chapeau,%20Emilie%20A&rft.date=2017-03-21&rft.volume=114&rft.issue=12&rft.spage=3151&rft.pages=3151-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Cproquest%3E4321283943%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881974799&rft_id=info:pmid/&rfr_iscdi=true |