Current gain and external quantum efficiency modeling of GeSn based direct bandgap multiple quantum well heterojunction phototransistor
This paper aims to provide the performance characteristics of proposed, strain balanced direct band gap multiple quantum wells (MQWs) hetero phototransistor (HPT) made of SiGeSn/GeSn alloys grown on Si substrate which is compatible with recent CMOS fabrication technology. This also presents a compre...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2017-03, Vol.49 (3), p.1-13, Article 125 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Optical and quantum electronics |
container_volume | 49 |
creator | Chakraborty, Vedatrayee Dey, Swagata Basu, Rikmantra Mukhopadhyay, Bratati Basu, P. K. |
description | This paper aims to provide the performance characteristics of proposed, strain balanced direct band gap multiple quantum wells (MQWs) hetero phototransistor (HPT) made of SiGeSn/GeSn alloys grown on Si substrate which is compatible with recent CMOS fabrication technology. This also presents a comprehensive comparison of this proposed structure with the existing HPT structure made of indirect gap Ge/SiGe MQWs. Alloys of Ge and Sn grown on Si platform shows about tenfold increase in absorption over Ge at C and L-bands due to direct nature of band gap in GeSn. Initial work begins the solution of continuity equation to solve the different terminal current densities and optical gain of the multiple quantum well structure. Main analysis was concentrated on finding the external quantum efficiency depending on the doping variations of emitter and base, base width etc. Finally the photocurrent density variations are estimated for the structure and compared with existing indirect band gap HPT. The calculated values for direct band gap GeSn HPT device are found to be comparable with those for indirect band gap SiGe device to flourish as a potential candidate of photo detectors for the present day telecommunication network. |
doi_str_mv | 10.1007/s11082-017-0947-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1881161034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881161034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b463528fd5104433d99a440b1b2b6f7cea96c3634573b8a200f56f5f2c80c9283</originalsourceid><addsrcrecordid>eNp1kMGKFDEURYMo2I5-gLuA69L3KqlUaimNzggDs1DBXUilXnrSVCc1SQqdL_C3raZFZuPqceHeA-8w9hbhPQL0Hwoi6LYB7BsYZN_gM7bDrm8bjf2P52wHAlSjBxxeslelHAFAyQ527Pd-zZli5QcbIrdx4vSrUo525g-rjXU9cfI-uEDRPfJTmmgO8cCT59f0NfLRFpr4FDK5uoU4HezCT-tcwzLTP8JPmmd-Txs3HdfoakiRL_epppptLKHUlF-zF97Ohd78vVfs--dP3_Y3ze3d9Zf9x9vGCVS1GaUSXav91CFIKcQ0DFZKGHFsR-V7R3ZQTighu16M2rYAvlO-863T4IZWiyv27sJdcnpYqVRzTOv53WJQa0SFIOTWwkvL5VRKJm-WHE42PxoEc_ZtLr7N5tucfRvcNu1lU7ZuPFB-Qv7v6A8f64WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881161034</pqid></control><display><type>article</type><title>Current gain and external quantum efficiency modeling of GeSn based direct bandgap multiple quantum well heterojunction phototransistor</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chakraborty, Vedatrayee ; Dey, Swagata ; Basu, Rikmantra ; Mukhopadhyay, Bratati ; Basu, P. K.</creator><creatorcontrib>Chakraborty, Vedatrayee ; Dey, Swagata ; Basu, Rikmantra ; Mukhopadhyay, Bratati ; Basu, P. K.</creatorcontrib><description>This paper aims to provide the performance characteristics of proposed, strain balanced direct band gap multiple quantum wells (MQWs) hetero phototransistor (HPT) made of SiGeSn/GeSn alloys grown on Si substrate which is compatible with recent CMOS fabrication technology. This also presents a comprehensive comparison of this proposed structure with the existing HPT structure made of indirect gap Ge/SiGe MQWs. Alloys of Ge and Sn grown on Si platform shows about tenfold increase in absorption over Ge at C and L-bands due to direct nature of band gap in GeSn. Initial work begins the solution of continuity equation to solve the different terminal current densities and optical gain of the multiple quantum well structure. Main analysis was concentrated on finding the external quantum efficiency depending on the doping variations of emitter and base, base width etc. Finally the photocurrent density variations are estimated for the structure and compared with existing indirect band gap HPT. The calculated values for direct band gap GeSn HPT device are found to be comparable with those for indirect band gap SiGe device to flourish as a potential candidate of photo detectors for the present day telecommunication network.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-017-0947-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Continuity equation ; Electrical Engineering ; Emitters ; Energy gap ; Germanium ; Heterojunctions ; Intermetallic compounds ; Lasers ; Mathematical analysis ; Multi Quantum Wells ; Optical Devices ; Optics ; Photoelectric effect ; Photonics ; Physics ; Physics and Astronomy ; Quantum efficiency ; Silicon germanides ; Silicon substrates ; Tin</subject><ispartof>Optical and quantum electronics, 2017-03, Vol.49 (3), p.1-13, Article 125</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b463528fd5104433d99a440b1b2b6f7cea96c3634573b8a200f56f5f2c80c9283</citedby><cites>FETCH-LOGICAL-c316t-b463528fd5104433d99a440b1b2b6f7cea96c3634573b8a200f56f5f2c80c9283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-017-0947-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-017-0947-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chakraborty, Vedatrayee</creatorcontrib><creatorcontrib>Dey, Swagata</creatorcontrib><creatorcontrib>Basu, Rikmantra</creatorcontrib><creatorcontrib>Mukhopadhyay, Bratati</creatorcontrib><creatorcontrib>Basu, P. K.</creatorcontrib><title>Current gain and external quantum efficiency modeling of GeSn based direct bandgap multiple quantum well heterojunction phototransistor</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>This paper aims to provide the performance characteristics of proposed, strain balanced direct band gap multiple quantum wells (MQWs) hetero phototransistor (HPT) made of SiGeSn/GeSn alloys grown on Si substrate which is compatible with recent CMOS fabrication technology. This also presents a comprehensive comparison of this proposed structure with the existing HPT structure made of indirect gap Ge/SiGe MQWs. Alloys of Ge and Sn grown on Si platform shows about tenfold increase in absorption over Ge at C and L-bands due to direct nature of band gap in GeSn. Initial work begins the solution of continuity equation to solve the different terminal current densities and optical gain of the multiple quantum well structure. Main analysis was concentrated on finding the external quantum efficiency depending on the doping variations of emitter and base, base width etc. Finally the photocurrent density variations are estimated for the structure and compared with existing indirect band gap HPT. The calculated values for direct band gap GeSn HPT device are found to be comparable with those for indirect band gap SiGe device to flourish as a potential candidate of photo detectors for the present day telecommunication network.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Continuity equation</subject><subject>Electrical Engineering</subject><subject>Emitters</subject><subject>Energy gap</subject><subject>Germanium</subject><subject>Heterojunctions</subject><subject>Intermetallic compounds</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Multi Quantum Wells</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photoelectric effect</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum efficiency</subject><subject>Silicon germanides</subject><subject>Silicon substrates</subject><subject>Tin</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMGKFDEURYMo2I5-gLuA69L3KqlUaimNzggDs1DBXUilXnrSVCc1SQqdL_C3raZFZuPqceHeA-8w9hbhPQL0Hwoi6LYB7BsYZN_gM7bDrm8bjf2P52wHAlSjBxxeslelHAFAyQ527Pd-zZli5QcbIrdx4vSrUo525g-rjXU9cfI-uEDRPfJTmmgO8cCT59f0NfLRFpr4FDK5uoU4HezCT-tcwzLTP8JPmmd-Txs3HdfoakiRL_epppptLKHUlF-zF97Ohd78vVfs--dP3_Y3ze3d9Zf9x9vGCVS1GaUSXav91CFIKcQ0DFZKGHFsR-V7R3ZQTighu16M2rYAvlO-863T4IZWiyv27sJdcnpYqVRzTOv53WJQa0SFIOTWwkvL5VRKJm-WHE42PxoEc_ZtLr7N5tucfRvcNu1lU7ZuPFB-Qv7v6A8f64WQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Chakraborty, Vedatrayee</creator><creator>Dey, Swagata</creator><creator>Basu, Rikmantra</creator><creator>Mukhopadhyay, Bratati</creator><creator>Basu, P. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Current gain and external quantum efficiency modeling of GeSn based direct bandgap multiple quantum well heterojunction phototransistor</title><author>Chakraborty, Vedatrayee ; Dey, Swagata ; Basu, Rikmantra ; Mukhopadhyay, Bratati ; Basu, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b463528fd5104433d99a440b1b2b6f7cea96c3634573b8a200f56f5f2c80c9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Continuity equation</topic><topic>Electrical Engineering</topic><topic>Emitters</topic><topic>Energy gap</topic><topic>Germanium</topic><topic>Heterojunctions</topic><topic>Intermetallic compounds</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Multi Quantum Wells</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photoelectric effect</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum efficiency</topic><topic>Silicon germanides</topic><topic>Silicon substrates</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Vedatrayee</creatorcontrib><creatorcontrib>Dey, Swagata</creatorcontrib><creatorcontrib>Basu, Rikmantra</creatorcontrib><creatorcontrib>Mukhopadhyay, Bratati</creatorcontrib><creatorcontrib>Basu, P. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Vedatrayee</au><au>Dey, Swagata</au><au>Basu, Rikmantra</au><au>Mukhopadhyay, Bratati</au><au>Basu, P. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current gain and external quantum efficiency modeling of GeSn based direct bandgap multiple quantum well heterojunction phototransistor</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>49</volume><issue>3</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>125</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>This paper aims to provide the performance characteristics of proposed, strain balanced direct band gap multiple quantum wells (MQWs) hetero phototransistor (HPT) made of SiGeSn/GeSn alloys grown on Si substrate which is compatible with recent CMOS fabrication technology. This also presents a comprehensive comparison of this proposed structure with the existing HPT structure made of indirect gap Ge/SiGe MQWs. Alloys of Ge and Sn grown on Si platform shows about tenfold increase in absorption over Ge at C and L-bands due to direct nature of band gap in GeSn. Initial work begins the solution of continuity equation to solve the different terminal current densities and optical gain of the multiple quantum well structure. Main analysis was concentrated on finding the external quantum efficiency depending on the doping variations of emitter and base, base width etc. Finally the photocurrent density variations are estimated for the structure and compared with existing indirect band gap HPT. The calculated values for direct band gap GeSn HPT device are found to be comparable with those for indirect band gap SiGe device to flourish as a potential candidate of photo detectors for the present day telecommunication network.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-017-0947-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2017-03, Vol.49 (3), p.1-13, Article 125 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_1881161034 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Continuity equation Electrical Engineering Emitters Energy gap Germanium Heterojunctions Intermetallic compounds Lasers Mathematical analysis Multi Quantum Wells Optical Devices Optics Photoelectric effect Photonics Physics Physics and Astronomy Quantum efficiency Silicon germanides Silicon substrates Tin |
title | Current gain and external quantum efficiency modeling of GeSn based direct bandgap multiple quantum well heterojunction phototransistor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20gain%20and%20external%20quantum%20efficiency%20modeling%20of%20GeSn%20based%20direct%20bandgap%20multiple%20quantum%20well%20heterojunction%20phototransistor&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Chakraborty,%20Vedatrayee&rft.date=2017-03-01&rft.volume=49&rft.issue=3&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=125&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-017-0947-1&rft_dat=%3Cproquest_cross%3E1881161034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881161034&rft_id=info:pmid/&rfr_iscdi=true |