Using semantic fingerprinting in finance
Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list...
Gespeichert in:
Veröffentlicht in: | Applied economics 2017-06, Vol.49 (28), p.2719-2735 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2735 |
---|---|
container_issue | 28 |
container_start_page | 2719 |
container_title | Applied economics |
container_volume | 49 |
creator | Ibriyamova, Feriha Kogan, Samuel Salganik-Shoshan, Galla Stolin, David |
description | Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list analysis with an easy-to-implement and computationally efficient alternative called semantic fingerprinting. Using the prediction of stock return correlations as an illustration, we show semantic fingerprinting to produce superior results. We argue that semantic fingerprinting significantly reduces the barrier to entry for research involving textual content analysis, and we provide guidance on implementing this technique. |
doi_str_mv | 10.1080/00036846.2016.1245844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1881118460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321194139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-77565cf1ffd2f5a41273d77990abca6c08591ef3ce2a967511da0a4b276a10683</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QSh46WVrJt97U4pfUPBizyHNJpKym63JFum_N0vrxYOn4R2eGWYehG4BLwArfI8xpkIxsSAYxAII44qxMzQBJkTFiKLnaDIy1QhdoquctyUCoXKC5usc4ucsu87EIdiZL8mlXQollX6IY8dE667RhTdtdjenOkXr56eP5Wu1en95Wz6uKsuoGCopueDWg_cN8dwwIJI2UtY1NhtrhMWK1-A8tY6YWkgO0Bhs2IZIYQALRadofty7S_3X3uVBdyFb17Ymun6fNagaGAPGaUHv_qDbfp9iua5QCgDKu7hQ_EjZ1OecnNflu86kgwasR3_6158e_emTvzL3cJwL0fepM999ahs9mEPbJ5-KkpA1_X_FDyRwdHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881118460</pqid></control><display><type>article</type><title>Using semantic fingerprinting in finance</title><source>EBSCOhost Business Source Complete</source><creator>Ibriyamova, Feriha ; Kogan, Samuel ; Salganik-Shoshan, Galla ; Stolin, David</creator><creatorcontrib>Ibriyamova, Feriha ; Kogan, Samuel ; Salganik-Shoshan, Galla ; Stolin, David</creatorcontrib><description>Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list analysis with an easy-to-implement and computationally efficient alternative called semantic fingerprinting. Using the prediction of stock return correlations as an illustration, we show semantic fingerprinting to produce superior results. We argue that semantic fingerprinting significantly reduces the barrier to entry for research involving textual content analysis, and we provide guidance on implementing this technique.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/00036846.2016.1245844</identifier><identifier>CODEN: APPEBP</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Content analysis ; industries ; Rates of return ; Securities trading ; semantic fingerprint ; Semantics ; stock returns ; Text analysis ; Textual analysis</subject><ispartof>Applied economics, 2017-06, Vol.49 (28), p.2719-2735</ispartof><rights>2016 Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-77565cf1ffd2f5a41273d77990abca6c08591ef3ce2a967511da0a4b276a10683</citedby><cites>FETCH-LOGICAL-c436t-77565cf1ffd2f5a41273d77990abca6c08591ef3ce2a967511da0a4b276a10683</cites><orcidid>0000-0003-0240-3148 ; 0000-0001-6955-1976 ; 0000-0002-6013-6431 ; 0000-0003-2235-4873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ibriyamova, Feriha</creatorcontrib><creatorcontrib>Kogan, Samuel</creatorcontrib><creatorcontrib>Salganik-Shoshan, Galla</creatorcontrib><creatorcontrib>Stolin, David</creatorcontrib><title>Using semantic fingerprinting in finance</title><title>Applied economics</title><description>Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list analysis with an easy-to-implement and computationally efficient alternative called semantic fingerprinting. Using the prediction of stock return correlations as an illustration, we show semantic fingerprinting to produce superior results. We argue that semantic fingerprinting significantly reduces the barrier to entry for research involving textual content analysis, and we provide guidance on implementing this technique.</description><subject>Content analysis</subject><subject>industries</subject><subject>Rates of return</subject><subject>Securities trading</subject><subject>semantic fingerprint</subject><subject>Semantics</subject><subject>stock returns</subject><subject>Text analysis</subject><subject>Textual analysis</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QSh46WVrJt97U4pfUPBizyHNJpKym63JFum_N0vrxYOn4R2eGWYehG4BLwArfI8xpkIxsSAYxAII44qxMzQBJkTFiKLnaDIy1QhdoquctyUCoXKC5usc4ucsu87EIdiZL8mlXQollX6IY8dE667RhTdtdjenOkXr56eP5Wu1en95Wz6uKsuoGCopueDWg_cN8dwwIJI2UtY1NhtrhMWK1-A8tY6YWkgO0Bhs2IZIYQALRadofty7S_3X3uVBdyFb17Ymun6fNagaGAPGaUHv_qDbfp9iua5QCgDKu7hQ_EjZ1OecnNflu86kgwasR3_6158e_emTvzL3cJwL0fepM999ahs9mEPbJ5-KkpA1_X_FDyRwdHs</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Ibriyamova, Feriha</creator><creator>Kogan, Samuel</creator><creator>Salganik-Shoshan, Galla</creator><creator>Stolin, David</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-0240-3148</orcidid><orcidid>https://orcid.org/0000-0001-6955-1976</orcidid><orcidid>https://orcid.org/0000-0002-6013-6431</orcidid><orcidid>https://orcid.org/0000-0003-2235-4873</orcidid></search><sort><creationdate>20170615</creationdate><title>Using semantic fingerprinting in finance</title><author>Ibriyamova, Feriha ; Kogan, Samuel ; Salganik-Shoshan, Galla ; Stolin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-77565cf1ffd2f5a41273d77990abca6c08591ef3ce2a967511da0a4b276a10683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Content analysis</topic><topic>industries</topic><topic>Rates of return</topic><topic>Securities trading</topic><topic>semantic fingerprint</topic><topic>Semantics</topic><topic>stock returns</topic><topic>Text analysis</topic><topic>Textual analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibriyamova, Feriha</creatorcontrib><creatorcontrib>Kogan, Samuel</creatorcontrib><creatorcontrib>Salganik-Shoshan, Galla</creatorcontrib><creatorcontrib>Stolin, David</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibriyamova, Feriha</au><au>Kogan, Samuel</au><au>Salganik-Shoshan, Galla</au><au>Stolin, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using semantic fingerprinting in finance</atitle><jtitle>Applied economics</jtitle><date>2017-06-15</date><risdate>2017</risdate><volume>49</volume><issue>28</issue><spage>2719</spage><epage>2735</epage><pages>2719-2735</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><coden>APPEBP</coden><abstract>Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list analysis with an easy-to-implement and computationally efficient alternative called semantic fingerprinting. Using the prediction of stock return correlations as an illustration, we show semantic fingerprinting to produce superior results. We argue that semantic fingerprinting significantly reduces the barrier to entry for research involving textual content analysis, and we provide guidance on implementing this technique.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/00036846.2016.1245844</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0240-3148</orcidid><orcidid>https://orcid.org/0000-0001-6955-1976</orcidid><orcidid>https://orcid.org/0000-0002-6013-6431</orcidid><orcidid>https://orcid.org/0000-0003-2235-4873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6846 |
ispartof | Applied economics, 2017-06, Vol.49 (28), p.2719-2735 |
issn | 0003-6846 1466-4283 |
language | eng |
recordid | cdi_proquest_journals_1881118460 |
source | EBSCOhost Business Source Complete |
subjects | Content analysis industries Rates of return Securities trading semantic fingerprint Semantics stock returns Text analysis Textual analysis |
title | Using semantic fingerprinting in finance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20semantic%20fingerprinting%20in%20finance&rft.jtitle=Applied%20economics&rft.au=Ibriyamova,%20Feriha&rft.date=2017-06-15&rft.volume=49&rft.issue=28&rft.spage=2719&rft.epage=2735&rft.pages=2719-2735&rft.issn=0003-6846&rft.eissn=1466-4283&rft.coden=APPEBP&rft_id=info:doi/10.1080/00036846.2016.1245844&rft_dat=%3Cproquest_infor%3E4321194139%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881118460&rft_id=info:pmid/&rfr_iscdi=true |