Using semantic fingerprinting in finance

Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied economics 2017-06, Vol.49 (28), p.2719-2735
Hauptverfasser: Ibriyamova, Feriha, Kogan, Samuel, Salganik-Shoshan, Galla, Stolin, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2735
container_issue 28
container_start_page 2719
container_title Applied economics
container_volume 49
creator Ibriyamova, Feriha
Kogan, Samuel
Salganik-Shoshan, Galla
Stolin, David
description Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list analysis with an easy-to-implement and computationally efficient alternative called semantic fingerprinting. Using the prediction of stock return correlations as an illustration, we show semantic fingerprinting to produce superior results. We argue that semantic fingerprinting significantly reduces the barrier to entry for research involving textual content analysis, and we provide guidance on implementing this technique.
doi_str_mv 10.1080/00036846.2016.1245844
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1881118460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321194139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-77565cf1ffd2f5a41273d77990abca6c08591ef3ce2a967511da0a4b276a10683</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QSh46WVrJt97U4pfUPBizyHNJpKym63JFum_N0vrxYOn4R2eGWYehG4BLwArfI8xpkIxsSAYxAII44qxMzQBJkTFiKLnaDIy1QhdoquctyUCoXKC5usc4ucsu87EIdiZL8mlXQollX6IY8dE667RhTdtdjenOkXr56eP5Wu1en95Wz6uKsuoGCopueDWg_cN8dwwIJI2UtY1NhtrhMWK1-A8tY6YWkgO0Bhs2IZIYQALRadofty7S_3X3uVBdyFb17Ymun6fNagaGAPGaUHv_qDbfp9iua5QCgDKu7hQ_EjZ1OecnNflu86kgwasR3_6158e_emTvzL3cJwL0fepM999ahs9mEPbJ5-KkpA1_X_FDyRwdHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881118460</pqid></control><display><type>article</type><title>Using semantic fingerprinting in finance</title><source>EBSCOhost Business Source Complete</source><creator>Ibriyamova, Feriha ; Kogan, Samuel ; Salganik-Shoshan, Galla ; Stolin, David</creator><creatorcontrib>Ibriyamova, Feriha ; Kogan, Samuel ; Salganik-Shoshan, Galla ; Stolin, David</creatorcontrib><description>Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list analysis with an easy-to-implement and computationally efficient alternative called semantic fingerprinting. Using the prediction of stock return correlations as an illustration, we show semantic fingerprinting to produce superior results. We argue that semantic fingerprinting significantly reduces the barrier to entry for research involving textual content analysis, and we provide guidance on implementing this technique.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/00036846.2016.1245844</identifier><identifier>CODEN: APPEBP</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Content analysis ; industries ; Rates of return ; Securities trading ; semantic fingerprint ; Semantics ; stock returns ; Text analysis ; Textual analysis</subject><ispartof>Applied economics, 2017-06, Vol.49 (28), p.2719-2735</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-77565cf1ffd2f5a41273d77990abca6c08591ef3ce2a967511da0a4b276a10683</citedby><cites>FETCH-LOGICAL-c436t-77565cf1ffd2f5a41273d77990abca6c08591ef3ce2a967511da0a4b276a10683</cites><orcidid>0000-0003-0240-3148 ; 0000-0001-6955-1976 ; 0000-0002-6013-6431 ; 0000-0003-2235-4873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ibriyamova, Feriha</creatorcontrib><creatorcontrib>Kogan, Samuel</creatorcontrib><creatorcontrib>Salganik-Shoshan, Galla</creatorcontrib><creatorcontrib>Stolin, David</creatorcontrib><title>Using semantic fingerprinting in finance</title><title>Applied economics</title><description>Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list analysis with an easy-to-implement and computationally efficient alternative called semantic fingerprinting. Using the prediction of stock return correlations as an illustration, we show semantic fingerprinting to produce superior results. We argue that semantic fingerprinting significantly reduces the barrier to entry for research involving textual content analysis, and we provide guidance on implementing this technique.</description><subject>Content analysis</subject><subject>industries</subject><subject>Rates of return</subject><subject>Securities trading</subject><subject>semantic fingerprint</subject><subject>Semantics</subject><subject>stock returns</subject><subject>Text analysis</subject><subject>Textual analysis</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QSh46WVrJt97U4pfUPBizyHNJpKym63JFum_N0vrxYOn4R2eGWYehG4BLwArfI8xpkIxsSAYxAII44qxMzQBJkTFiKLnaDIy1QhdoquctyUCoXKC5usc4ucsu87EIdiZL8mlXQollX6IY8dE667RhTdtdjenOkXr56eP5Wu1en95Wz6uKsuoGCopueDWg_cN8dwwIJI2UtY1NhtrhMWK1-A8tY6YWkgO0Bhs2IZIYQALRadofty7S_3X3uVBdyFb17Ymun6fNagaGAPGaUHv_qDbfp9iua5QCgDKu7hQ_EjZ1OecnNflu86kgwasR3_6158e_emTvzL3cJwL0fepM999ahs9mEPbJ5-KkpA1_X_FDyRwdHs</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Ibriyamova, Feriha</creator><creator>Kogan, Samuel</creator><creator>Salganik-Shoshan, Galla</creator><creator>Stolin, David</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-0240-3148</orcidid><orcidid>https://orcid.org/0000-0001-6955-1976</orcidid><orcidid>https://orcid.org/0000-0002-6013-6431</orcidid><orcidid>https://orcid.org/0000-0003-2235-4873</orcidid></search><sort><creationdate>20170615</creationdate><title>Using semantic fingerprinting in finance</title><author>Ibriyamova, Feriha ; Kogan, Samuel ; Salganik-Shoshan, Galla ; Stolin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-77565cf1ffd2f5a41273d77990abca6c08591ef3ce2a967511da0a4b276a10683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Content analysis</topic><topic>industries</topic><topic>Rates of return</topic><topic>Securities trading</topic><topic>semantic fingerprint</topic><topic>Semantics</topic><topic>stock returns</topic><topic>Text analysis</topic><topic>Textual analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibriyamova, Feriha</creatorcontrib><creatorcontrib>Kogan, Samuel</creatorcontrib><creatorcontrib>Salganik-Shoshan, Galla</creatorcontrib><creatorcontrib>Stolin, David</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibriyamova, Feriha</au><au>Kogan, Samuel</au><au>Salganik-Shoshan, Galla</au><au>Stolin, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using semantic fingerprinting in finance</atitle><jtitle>Applied economics</jtitle><date>2017-06-15</date><risdate>2017</risdate><volume>49</volume><issue>28</issue><spage>2719</spage><epage>2735</epage><pages>2719-2735</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><coden>APPEBP</coden><abstract>Researchers in finance and adjacent fields have increasingly been working with textual data, a common challenge being analysing the content of a text. Traditionally, this task has been approached through labour- and computation-intensive work with lists of words. In this article we compare word list analysis with an easy-to-implement and computationally efficient alternative called semantic fingerprinting. Using the prediction of stock return correlations as an illustration, we show semantic fingerprinting to produce superior results. We argue that semantic fingerprinting significantly reduces the barrier to entry for research involving textual content analysis, and we provide guidance on implementing this technique.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/00036846.2016.1245844</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0240-3148</orcidid><orcidid>https://orcid.org/0000-0001-6955-1976</orcidid><orcidid>https://orcid.org/0000-0002-6013-6431</orcidid><orcidid>https://orcid.org/0000-0003-2235-4873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6846
ispartof Applied economics, 2017-06, Vol.49 (28), p.2719-2735
issn 0003-6846
1466-4283
language eng
recordid cdi_proquest_journals_1881118460
source EBSCOhost Business Source Complete
subjects Content analysis
industries
Rates of return
Securities trading
semantic fingerprint
Semantics
stock returns
Text analysis
Textual analysis
title Using semantic fingerprinting in finance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20semantic%20fingerprinting%20in%20finance&rft.jtitle=Applied%20economics&rft.au=Ibriyamova,%20Feriha&rft.date=2017-06-15&rft.volume=49&rft.issue=28&rft.spage=2719&rft.epage=2735&rft.pages=2719-2735&rft.issn=0003-6846&rft.eissn=1466-4283&rft.coden=APPEBP&rft_id=info:doi/10.1080/00036846.2016.1245844&rft_dat=%3Cproquest_infor%3E4321194139%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881118460&rft_id=info:pmid/&rfr_iscdi=true