Nonlinear elliptic systems and mean-field games

We consider a class of quasilinear elliptic systems of PDEs consisting of N Hamilton–Jacobi–Bellman equations coupled with N divergence form equations, generalising to N  > 1 populations the PDEs for stationary Mean-Field Games first proposed by Lasry and Lions. We provide a wide range of suffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2016-08, Vol.23 (4), Article 44
Hauptverfasser: Bardi, Martino, Feleqi, Ermal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Nonlinear differential equations and applications
container_volume 23
creator Bardi, Martino
Feleqi, Ermal
description We consider a class of quasilinear elliptic systems of PDEs consisting of N Hamilton–Jacobi–Bellman equations coupled with N divergence form equations, generalising to N  > 1 populations the PDEs for stationary Mean-Field Games first proposed by Lasry and Lions. We provide a wide range of sufficient conditions for the existence of solutions to these systems: either the Hamiltonians are required to behave at most linearly for large gradients, as it occurs when the controls of the agents are bounded, or they must grow faster than linearly and not oscillate too much in the space variables, in a suitable sense. We show the connection of these systems with the classical strongly coupled systems of Hamilton–Jacobi–Bellman equations of the theory of N -person stochastic differential games studied by Bensoussan and Frehse. We also prove the existence of Nash equilibria in feedback form for some N -person games.
doi_str_mv 10.1007/s00030-016-0397-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880882348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880882348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6d30b7da54cca18efb2789c60679ec573f748863726217128dfe34509bf63b4a3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9giMZteP-LHiCqgSBUsMFuOc12lyqPY6dB_T6owsDDdM5zvXOkj5J7BIwPQqwwAAigwRUFYTfUFWTDJgVoAeTll4Ixazfk1ucl5D8C0EnZBVu9D3zY9-lRg2zaHsQlFPuURu1z4vi469D2NDbZ1sfMd5ltyFX2b8e73LsnXy_PnekO3H69v66ctDaK0I1W1gErXvpQheGYwVlwbGxQobTGUWkQtjVFCc8WZZtzUEYUswVZRiUp6sSQP8-4hDd9HzKPbD8fUTy8dMwaM4UKaqcXmVkhDzgmjO6Sm8-nkGLizFzd7cZMXd_bi9MTwmclTt99h-rP8L_QD_Y1jbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880882348</pqid></control><display><type>article</type><title>Nonlinear elliptic systems and mean-field games</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bardi, Martino ; Feleqi, Ermal</creator><creatorcontrib>Bardi, Martino ; Feleqi, Ermal</creatorcontrib><description>We consider a class of quasilinear elliptic systems of PDEs consisting of N Hamilton–Jacobi–Bellman equations coupled with N divergence form equations, generalising to N  &gt; 1 populations the PDEs for stationary Mean-Field Games first proposed by Lasry and Lions. We provide a wide range of sufficient conditions for the existence of solutions to these systems: either the Hamiltonians are required to behave at most linearly for large gradients, as it occurs when the controls of the agents are bounded, or they must grow faster than linearly and not oscillate too much in the space variables, in a suitable sense. We show the connection of these systems with the classical strongly coupled systems of Hamilton–Jacobi–Bellman equations of the theory of N -person stochastic differential games studied by Bensoussan and Frehse. We also prove the existence of Nash equilibria in feedback form for some N -person games.</description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-016-0397-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Differential equations ; Differential games ; Divergence ; Economic models ; Game theory ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear systems</subject><ispartof>Nonlinear differential equations and applications, 2016-08, Vol.23 (4), Article 44</ispartof><rights>Springer International Publishing 2016</rights><rights>2016© Springer International Publishing 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-6d30b7da54cca18efb2789c60679ec573f748863726217128dfe34509bf63b4a3</citedby><cites>FETCH-LOGICAL-c359t-6d30b7da54cca18efb2789c60679ec573f748863726217128dfe34509bf63b4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00030-016-0397-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00030-016-0397-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Bardi, Martino</creatorcontrib><creatorcontrib>Feleqi, Ermal</creatorcontrib><title>Nonlinear elliptic systems and mean-field games</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description>We consider a class of quasilinear elliptic systems of PDEs consisting of N Hamilton–Jacobi–Bellman equations coupled with N divergence form equations, generalising to N  &gt; 1 populations the PDEs for stationary Mean-Field Games first proposed by Lasry and Lions. We provide a wide range of sufficient conditions for the existence of solutions to these systems: either the Hamiltonians are required to behave at most linearly for large gradients, as it occurs when the controls of the agents are bounded, or they must grow faster than linearly and not oscillate too much in the space variables, in a suitable sense. We show the connection of these systems with the classical strongly coupled systems of Hamilton–Jacobi–Bellman equations of the theory of N -person stochastic differential games studied by Bensoussan and Frehse. We also prove the existence of Nash equilibria in feedback form for some N -person games.</description><subject>Analysis</subject><subject>Differential equations</subject><subject>Differential games</subject><subject>Divergence</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqXwA9giMZteP-LHiCqgSBUsMFuOc12lyqPY6dB_T6owsDDdM5zvXOkj5J7BIwPQqwwAAigwRUFYTfUFWTDJgVoAeTll4Ixazfk1ucl5D8C0EnZBVu9D3zY9-lRg2zaHsQlFPuURu1z4vi469D2NDbZ1sfMd5ltyFX2b8e73LsnXy_PnekO3H69v66ctDaK0I1W1gErXvpQheGYwVlwbGxQobTGUWkQtjVFCc8WZZtzUEYUswVZRiUp6sSQP8-4hDd9HzKPbD8fUTy8dMwaM4UKaqcXmVkhDzgmjO6Sm8-nkGLizFzd7cZMXd_bi9MTwmclTt99h-rP8L_QD_Y1jbA</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Bardi, Martino</creator><creator>Feleqi, Ermal</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160801</creationdate><title>Nonlinear elliptic systems and mean-field games</title><author>Bardi, Martino ; Feleqi, Ermal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6d30b7da54cca18efb2789c60679ec573f748863726217128dfe34509bf63b4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Differential equations</topic><topic>Differential games</topic><topic>Divergence</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardi, Martino</creatorcontrib><creatorcontrib>Feleqi, Ermal</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardi, Martino</au><au>Feleqi, Ermal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear elliptic systems and mean-field games</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>23</volume><issue>4</issue><artnum>44</artnum><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract>We consider a class of quasilinear elliptic systems of PDEs consisting of N Hamilton–Jacobi–Bellman equations coupled with N divergence form equations, generalising to N  &gt; 1 populations the PDEs for stationary Mean-Field Games first proposed by Lasry and Lions. We provide a wide range of sufficient conditions for the existence of solutions to these systems: either the Hamiltonians are required to behave at most linearly for large gradients, as it occurs when the controls of the agents are bounded, or they must grow faster than linearly and not oscillate too much in the space variables, in a suitable sense. We show the connection of these systems with the classical strongly coupled systems of Hamilton–Jacobi–Bellman equations of the theory of N -person stochastic differential games studied by Bensoussan and Frehse. We also prove the existence of Nash equilibria in feedback form for some N -person games.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-016-0397-7</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1021-9722
ispartof Nonlinear differential equations and applications, 2016-08, Vol.23 (4), Article 44
issn 1021-9722
1420-9004
language eng
recordid cdi_proquest_journals_1880882348
source SpringerLink Journals - AutoHoldings
subjects Analysis
Differential equations
Differential games
Divergence
Economic models
Game theory
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear systems
title Nonlinear elliptic systems and mean-field games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20elliptic%20systems%20and%20mean-field%20games&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Bardi,%20Martino&rft.date=2016-08-01&rft.volume=23&rft.issue=4&rft.artnum=44&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-016-0397-7&rft_dat=%3Cproquest_cross%3E1880882348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880882348&rft_id=info:pmid/&rfr_iscdi=true