The Fermat-Torricelli problem on surfaces
In this note a simple proof of the famous Fermat-Torricelli problem is given. For the vertices of a given triangle, Fermat asks for a fourth point such that the sum of its Euclidean distances to the three given points is minimized. Many authors present geometric approaches to the Fermat-Torricelli p...
Gespeichert in:
Veröffentlicht in: | Applied Mathematics-A Journal of Chinese Universities 2016-09, Vol.31 (3), p.362-366 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 366 |
---|---|
container_issue | 3 |
container_start_page | 362 |
container_title | Applied Mathematics-A Journal of Chinese Universities |
container_volume | 31 |
creator | Chen, Zhi-guo |
description | In this note a simple proof of the famous Fermat-Torricelli problem is given. For the vertices of a given triangle, Fermat asks for a fourth point such that the sum of its Euclidean distances to the three given points is minimized. Many authors present geometric approaches to the Fermat-Torricelli problem. We solve the problem by analytic and geometrical method and extend it to the sphere, we also characterize the median point P on the general regular surface. |
doi_str_mv | 10.1007/s11766-016-2715-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880882097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669927129</cqvip_id><sourcerecordid>1880882097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-47643044eb516f45e4802e46104da0ab9ff137b7cf8065a8ff855bbfd03f10c53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpD2CLYGIw3MXfI6poQarEUmbLSe1-KE1auxn497hKhZiY7obnvff0EHKP8IwA6iUhKikpoKSlQkHlFRmhMYwC5-I67wCCIjC8JZOUdgCAXHEh9Ig8LTe-mPm4dye67GLc1r5ptsUhdlXj90XXFqmPwdU-3ZGb4JrkJ5c5Jl-zt-X0nS4-5x_T1wWtGWcnypXkLPf6SqAMXHiuofRcIvCVA1eZEJCpStVBgxROh6CFqKqwAhYQasHG5HG4m3849j6d7K7rY5srLWoNWpdgVKZwoOrYpRR9sIe43bv4bRHsWYodpNgsxZ6lWJkz5ZBJmW3XPv65_E_o4VK06dr1Med-m6Q0JlOlYT_yn21q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880882097</pqid></control><display><type>article</type><title>The Fermat-Torricelli problem on surfaces</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Zhi-guo</creator><creatorcontrib>Chen, Zhi-guo</creatorcontrib><description>In this note a simple proof of the famous Fermat-Torricelli problem is given. For the vertices of a given triangle, Fermat asks for a fourth point such that the sum of its Euclidean distances to the three given points is minimized. Many authors present geometric approaches to the Fermat-Torricelli problem. We solve the problem by analytic and geometrical method and extend it to the sphere, we also characterize the median point P on the general regular surface.</description><identifier>ISSN: 1005-1031</identifier><identifier>EISSN: 1993-0445</identifier><identifier>DOI: 10.1007/s11766-016-2715-6</identifier><language>eng</language><publisher>Hangzhou: Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</publisher><subject>Applications of Mathematics ; Euclidean geometry ; Mathematics ; Mathematics and Statistics ; 三角形 ; 中值点 ; 几何方法 ; 正则曲面 ; 简单证明 ; 表面 ; 解析法 ; 距离和</subject><ispartof>Applied Mathematics-A Journal of Chinese Universities, 2016-09, Vol.31 (3), p.362-366</ispartof><rights>Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-47643044eb516f45e4802e46104da0ab9ff137b7cf8065a8ff855bbfd03f10c53</citedby><cites>FETCH-LOGICAL-c343t-47643044eb516f45e4802e46104da0ab9ff137b7cf8065a8ff855bbfd03f10c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86762X/86762X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11766-016-2715-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11766-016-2715-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Chen, Zhi-guo</creatorcontrib><title>The Fermat-Torricelli problem on surfaces</title><title>Applied Mathematics-A Journal of Chinese Universities</title><addtitle>Appl. Math. J. Chin. Univ</addtitle><addtitle>Applied Mathematics A Journal of Chinese Universities</addtitle><description>In this note a simple proof of the famous Fermat-Torricelli problem is given. For the vertices of a given triangle, Fermat asks for a fourth point such that the sum of its Euclidean distances to the three given points is minimized. Many authors present geometric approaches to the Fermat-Torricelli problem. We solve the problem by analytic and geometrical method and extend it to the sphere, we also characterize the median point P on the general regular surface.</description><subject>Applications of Mathematics</subject><subject>Euclidean geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>三角形</subject><subject>中值点</subject><subject>几何方法</subject><subject>正则曲面</subject><subject>简单证明</subject><subject>表面</subject><subject>解析法</subject><subject>距离和</subject><issn>1005-1031</issn><issn>1993-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElXpD2CLYGIw3MXfI6poQarEUmbLSe1-KE1auxn497hKhZiY7obnvff0EHKP8IwA6iUhKikpoKSlQkHlFRmhMYwC5-I67wCCIjC8JZOUdgCAXHEh9Ig8LTe-mPm4dye67GLc1r5ptsUhdlXj90XXFqmPwdU-3ZGb4JrkJ5c5Jl-zt-X0nS4-5x_T1wWtGWcnypXkLPf6SqAMXHiuofRcIvCVA1eZEJCpStVBgxROh6CFqKqwAhYQasHG5HG4m3849j6d7K7rY5srLWoNWpdgVKZwoOrYpRR9sIe43bv4bRHsWYodpNgsxZ6lWJkz5ZBJmW3XPv65_E_o4VK06dr1Med-m6Q0JlOlYT_yn21q</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Chen, Zhi-guo</creator><general>Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>The Fermat-Torricelli problem on surfaces</title><author>Chen, Zhi-guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-47643044eb516f45e4802e46104da0ab9ff137b7cf8065a8ff855bbfd03f10c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Euclidean geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>三角形</topic><topic>中值点</topic><topic>几何方法</topic><topic>正则曲面</topic><topic>简单证明</topic><topic>表面</topic><topic>解析法</topic><topic>距离和</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhi-guo</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Applied Mathematics-A Journal of Chinese Universities</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhi-guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fermat-Torricelli problem on surfaces</atitle><jtitle>Applied Mathematics-A Journal of Chinese Universities</jtitle><stitle>Appl. Math. J. Chin. Univ</stitle><addtitle>Applied Mathematics A Journal of Chinese Universities</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>31</volume><issue>3</issue><spage>362</spage><epage>366</epage><pages>362-366</pages><issn>1005-1031</issn><eissn>1993-0445</eissn><abstract>In this note a simple proof of the famous Fermat-Torricelli problem is given. For the vertices of a given triangle, Fermat asks for a fourth point such that the sum of its Euclidean distances to the three given points is minimized. Many authors present geometric approaches to the Fermat-Torricelli problem. We solve the problem by analytic and geometrical method and extend it to the sphere, we also characterize the median point P on the general regular surface.</abstract><cop>Hangzhou</cop><pub>Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</pub><doi>10.1007/s11766-016-2715-6</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-1031 |
ispartof | Applied Mathematics-A Journal of Chinese Universities, 2016-09, Vol.31 (3), p.362-366 |
issn | 1005-1031 1993-0445 |
language | eng |
recordid | cdi_proquest_journals_1880882097 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Euclidean geometry Mathematics Mathematics and Statistics 三角形 中值点 几何方法 正则曲面 简单证明 表面 解析法 距离和 |
title | The Fermat-Torricelli problem on surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fermat-Torricelli%20problem%20on%20surfaces&rft.jtitle=Applied%20Mathematics-A%20Journal%20of%20Chinese%20Universities&rft.au=Chen,%20Zhi-guo&rft.date=2016-09-01&rft.volume=31&rft.issue=3&rft.spage=362&rft.epage=366&rft.pages=362-366&rft.issn=1005-1031&rft.eissn=1993-0445&rft_id=info:doi/10.1007/s11766-016-2715-6&rft_dat=%3Cproquest_cross%3E1880882097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880882097&rft_id=info:pmid/&rft_cqvip_id=669927129&rfr_iscdi=true |