Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques

A negotiation between agents is typically an incomplete information game, where the agents initially do not know their opponent’s preferences or strategy. This poses a challenge, as efficient and effective negotiation requires the bidding agent to take the other’s wishes and future behavior into acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous agents and multi-agent systems 2016-09, Vol.30 (5), p.849-898
Hauptverfasser: Baarslag, Tim, Hendrikx, Mark J. C., Hindriks, Koen V., Jonker, Catholijn M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 5
container_start_page 849
container_title Autonomous agents and multi-agent systems
container_volume 30
creator Baarslag, Tim
Hendrikx, Mark J. C.
Hindriks, Koen V.
Jonker, Catholijn M.
description A negotiation between agents is typically an incomplete information game, where the agents initially do not know their opponent’s preferences or strategy. This poses a challenge, as efficient and effective negotiation requires the bidding agent to take the other’s wishes and future behavior into account when deciding on a proposal. Therefore, in order to reach better and earlier agreements, an agent can apply learning techniques to construct a model of the opponent. There is a mature body of research in negotiation that focuses on modeling the opponent, but there exists no recent survey of commonly used opponent modeling techniques. This work aims to advance and integrate knowledge of the field by providing a comprehensive survey of currently existing opponent models in a bilateral negotiation setting. We discuss all possible ways opponent modeling has been used to benefit agents so far, and we introduce a taxonomy of currently existing opponent models based on their underlying learning techniques. We also present techniques to measure the success of opponent models and provide guidelines for deciding on the appropriate performance measures for every opponent model type in our taxonomy.
doi_str_mv 10.1007/s10458-015-9309-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880882026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880882026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-424dacedfaf0a52d672c814058581ab2d3ff2ede1cff66bd0a88d93a652c44cd3</originalsourceid><addsrcrecordid>eNp1kMtKxDAYhYsoOF4ewF3AdTVJkzbjTgZvMOBG1yFN_sxkaJOapAPz9raMoBtX5yzOBb6iuCH4jmDc3CeCGRclJrxcVnhZkpNiQXhTlQ3j7HTylWhKyit6XlyktMOY1LQmi2K_BhW98xuk2jBmlLeAwjAEDz4j55Eac-hVBoNa100aVYc8bEJ2KrvgH5BCOvRDhC345PaA0hj3cEDB_s70wUA3X2TQW---RkhXxZlVXYLrH70sPp-fPlav5fr95W31uC41a0QuGWVGaTBWWaw4NXVDtSAMc8EFUS01lbUUDBBtbV23BishzLJSNaeaMW2qy-L2uDvEMP9muQtj9NOlJEJgISim9ZQix5SOIaUIVg7R9SoeJMFyxiuPeOWEV854JZk69NhJU9ZvIP5Z_rf0DRPcgN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880882026</pqid></control><display><type>article</type><title>Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baarslag, Tim ; Hendrikx, Mark J. C. ; Hindriks, Koen V. ; Jonker, Catholijn M.</creator><creatorcontrib>Baarslag, Tim ; Hendrikx, Mark J. C. ; Hindriks, Koen V. ; Jonker, Catholijn M.</creatorcontrib><description>A negotiation between agents is typically an incomplete information game, where the agents initially do not know their opponent’s preferences or strategy. This poses a challenge, as efficient and effective negotiation requires the bidding agent to take the other’s wishes and future behavior into account when deciding on a proposal. Therefore, in order to reach better and earlier agreements, an agent can apply learning techniques to construct a model of the opponent. There is a mature body of research in negotiation that focuses on modeling the opponent, but there exists no recent survey of commonly used opponent modeling techniques. This work aims to advance and integrate knowledge of the field by providing a comprehensive survey of currently existing opponent models in a bilateral negotiation setting. We discuss all possible ways opponent modeling has been used to benefit agents so far, and we introduce a taxonomy of currently existing opponent models based on their underlying learning techniques. We also present techniques to measure the success of opponent models and provide guidelines for deciding on the appropriate performance measures for every opponent model type in our taxonomy.</description><identifier>ISSN: 1387-2532</identifier><identifier>EISSN: 1573-7454</identifier><identifier>DOI: 10.1007/s10458-015-9309-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Computer Systems Organization and Communication Networks ; Learning ; Modelling ; Software Engineering/Programming and Operating Systems ; Taxonomy ; User Interfaces and Human Computer Interaction</subject><ispartof>Autonomous agents and multi-agent systems, 2016-09, Vol.30 (5), p.849-898</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-424dacedfaf0a52d672c814058581ab2d3ff2ede1cff66bd0a88d93a652c44cd3</citedby><cites>FETCH-LOGICAL-c478t-424dacedfaf0a52d672c814058581ab2d3ff2ede1cff66bd0a88d93a652c44cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10458-015-9309-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10458-015-9309-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baarslag, Tim</creatorcontrib><creatorcontrib>Hendrikx, Mark J. C.</creatorcontrib><creatorcontrib>Hindriks, Koen V.</creatorcontrib><creatorcontrib>Jonker, Catholijn M.</creatorcontrib><title>Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques</title><title>Autonomous agents and multi-agent systems</title><addtitle>Auton Agent Multi-Agent Syst</addtitle><description>A negotiation between agents is typically an incomplete information game, where the agents initially do not know their opponent’s preferences or strategy. This poses a challenge, as efficient and effective negotiation requires the bidding agent to take the other’s wishes and future behavior into account when deciding on a proposal. Therefore, in order to reach better and earlier agreements, an agent can apply learning techniques to construct a model of the opponent. There is a mature body of research in negotiation that focuses on modeling the opponent, but there exists no recent survey of commonly used opponent modeling techniques. This work aims to advance and integrate knowledge of the field by providing a comprehensive survey of currently existing opponent models in a bilateral negotiation setting. We discuss all possible ways opponent modeling has been used to benefit agents so far, and we introduce a taxonomy of currently existing opponent models based on their underlying learning techniques. We also present techniques to measure the success of opponent models and provide guidelines for deciding on the appropriate performance measures for every opponent model type in our taxonomy.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Learning</subject><subject>Modelling</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Taxonomy</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1387-2532</issn><issn>1573-7454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kMtKxDAYhYsoOF4ewF3AdTVJkzbjTgZvMOBG1yFN_sxkaJOapAPz9raMoBtX5yzOBb6iuCH4jmDc3CeCGRclJrxcVnhZkpNiQXhTlQ3j7HTylWhKyit6XlyktMOY1LQmi2K_BhW98xuk2jBmlLeAwjAEDz4j55Eac-hVBoNa100aVYc8bEJ2KrvgH5BCOvRDhC345PaA0hj3cEDB_s70wUA3X2TQW---RkhXxZlVXYLrH70sPp-fPlav5fr95W31uC41a0QuGWVGaTBWWaw4NXVDtSAMc8EFUS01lbUUDBBtbV23BishzLJSNaeaMW2qy-L2uDvEMP9muQtj9NOlJEJgISim9ZQix5SOIaUIVg7R9SoeJMFyxiuPeOWEV854JZk69NhJU9ZvIP5Z_rf0DRPcgN0</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Baarslag, Tim</creator><creator>Hendrikx, Mark J. C.</creator><creator>Hindriks, Koen V.</creator><creator>Jonker, Catholijn M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques</title><author>Baarslag, Tim ; Hendrikx, Mark J. C. ; Hindriks, Koen V. ; Jonker, Catholijn M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-424dacedfaf0a52d672c814058581ab2d3ff2ede1cff66bd0a88d93a652c44cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Learning</topic><topic>Modelling</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Taxonomy</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baarslag, Tim</creatorcontrib><creatorcontrib>Hendrikx, Mark J. C.</creatorcontrib><creatorcontrib>Hindriks, Koen V.</creatorcontrib><creatorcontrib>Jonker, Catholijn M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Autonomous agents and multi-agent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baarslag, Tim</au><au>Hendrikx, Mark J. C.</au><au>Hindriks, Koen V.</au><au>Jonker, Catholijn M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques</atitle><jtitle>Autonomous agents and multi-agent systems</jtitle><stitle>Auton Agent Multi-Agent Syst</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>30</volume><issue>5</issue><spage>849</spage><epage>898</epage><pages>849-898</pages><issn>1387-2532</issn><eissn>1573-7454</eissn><abstract>A negotiation between agents is typically an incomplete information game, where the agents initially do not know their opponent’s preferences or strategy. This poses a challenge, as efficient and effective negotiation requires the bidding agent to take the other’s wishes and future behavior into account when deciding on a proposal. Therefore, in order to reach better and earlier agreements, an agent can apply learning techniques to construct a model of the opponent. There is a mature body of research in negotiation that focuses on modeling the opponent, but there exists no recent survey of commonly used opponent modeling techniques. This work aims to advance and integrate knowledge of the field by providing a comprehensive survey of currently existing opponent models in a bilateral negotiation setting. We discuss all possible ways opponent modeling has been used to benefit agents so far, and we introduce a taxonomy of currently existing opponent models based on their underlying learning techniques. We also present techniques to measure the success of opponent models and provide guidelines for deciding on the appropriate performance measures for every opponent model type in our taxonomy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10458-015-9309-1</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1387-2532
ispartof Autonomous agents and multi-agent systems, 2016-09, Vol.30 (5), p.849-898
issn 1387-2532
1573-7454
language eng
recordid cdi_proquest_journals_1880882026
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Computer Systems Organization and Communication Networks
Learning
Modelling
Software Engineering/Programming and Operating Systems
Taxonomy
User Interfaces and Human Computer Interaction
title Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20about%20the%20opponent%20in%20automated%20bilateral%20negotiation:%20a%20comprehensive%20survey%20of%20opponent%20modeling%20techniques&rft.jtitle=Autonomous%20agents%20and%20multi-agent%20systems&rft.au=Baarslag,%20Tim&rft.date=2016-09-01&rft.volume=30&rft.issue=5&rft.spage=849&rft.epage=898&rft.pages=849-898&rft.issn=1387-2532&rft.eissn=1573-7454&rft_id=info:doi/10.1007/s10458-015-9309-1&rft_dat=%3Cproquest_cross%3E1880882026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880882026&rft_id=info:pmid/&rfr_iscdi=true