Effect of thermal nonequilibrium on reactions in hydrogen combustion

The presence of shocks in scramjet internal flows introduces nonequilibrium of internal energy modes of the molecules. Here, the effect of vibrational nonequilibrium on key reactions of hydrogen–air combustion is studied. A quasi-classical trajectory (QCT) approach is used to derive reaction probabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock waves 2016-09, Vol.26 (5), p.539-549
Hauptverfasser: Voelkel, S., Raman, V., Varghese, P. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 5
container_start_page 539
container_title Shock waves
container_volume 26
creator Voelkel, S.
Raman, V.
Varghese, P. L.
description The presence of shocks in scramjet internal flows introduces nonequilibrium of internal energy modes of the molecules. Here, the effect of vibrational nonequilibrium on key reactions of hydrogen–air combustion is studied. A quasi-classical trajectory (QCT) approach is used to derive reaction probability for nonequilibrium conditions using ab initio-derived potential energy surfaces. The reaction rates under nonequilibrium are studied using a two-temperature description, where the vibrational modes are assumed to be distributed according to a Boltzmann distribution at a characteristic vibrational temperature, in addition to a translational temperature describing the translational and rotational population distribution. At scramjet-relevant conditions, it is found that the nonequilibrium reaction rate depends not only on the level of vibrational excitation, but also on the reactants involved. Conventional two-temperature models for reaction rates, often derived using empirical means, were found to be inaccurate under these conditions, and modified parameters are proposed based on the QCT calculations. It is also found that models that include details of the reaction process through dissociation energy, for instance, provide a better description of nonequilibrium effects.
doi_str_mv 10.1007/s00193-016-0645-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880878662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880878662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8bcbac849cae47d21e308a34925b38af3ce89f24174f33588c088ef80929cb2e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gsMRue7SR-GVEpH1IlFpgtx7XbVI3d2snQf0-qMLAwPenq3PukQ8g9h0cOoJ4yAK8lA14xqIqSwQWZ8UIKJngpL8kMaomMC1TX5Cbn3UirSqkZeVl672xPo6f91qXO7GmIwR2Hdt82qR06GgNNzti-jSHTNtDtaZ3ixgVqY9cM-Zzfkitv9tnd_d45-X5dfi3e2erz7WPxvGJW8qpn2NjGWCxqa1yh1oI7CWhkUYuykWi8tA5rLwquCi9liWgB0XmEWtS2EU7OycO0e0jxOLjc610cUhhfao4IqLCqxEjxibIp5pyc14fUdiadNAd9lqUnWXqUpc-yNIwdMXXyyIaNS3-W_y39AF1ZbHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880878662</pqid></control><display><type>article</type><title>Effect of thermal nonequilibrium on reactions in hydrogen combustion</title><source>SpringerLink Journals - AutoHoldings</source><creator>Voelkel, S. ; Raman, V. ; Varghese, P. L.</creator><creatorcontrib>Voelkel, S. ; Raman, V. ; Varghese, P. L.</creatorcontrib><description>The presence of shocks in scramjet internal flows introduces nonequilibrium of internal energy modes of the molecules. Here, the effect of vibrational nonequilibrium on key reactions of hydrogen–air combustion is studied. A quasi-classical trajectory (QCT) approach is used to derive reaction probability for nonequilibrium conditions using ab initio-derived potential energy surfaces. The reaction rates under nonequilibrium are studied using a two-temperature description, where the vibrational modes are assumed to be distributed according to a Boltzmann distribution at a characteristic vibrational temperature, in addition to a translational temperature describing the translational and rotational population distribution. At scramjet-relevant conditions, it is found that the nonequilibrium reaction rate depends not only on the level of vibrational excitation, but also on the reactants involved. Conventional two-temperature models for reaction rates, often derived using empirical means, were found to be inaccurate under these conditions, and modified parameters are proposed based on the QCT calculations. It is also found that models that include details of the reaction process through dissociation energy, for instance, provide a better description of nonequilibrium effects.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-016-0645-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Boltzmann distribution ; Condensed Matter Physics ; Energy of dissociation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Free energy ; Heat and Mass Transfer ; Heat of formation ; Hydrogen combustion ; Internal energy ; Internal flow ; Nonequilibrium conditions ; Original Article ; Parameter modification ; Population distribution ; Potential energy ; Supersonic combustion ramjet engines ; Thermodynamics</subject><ispartof>Shock waves, 2016-09, Vol.26 (5), p.539-549</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8bcbac849cae47d21e308a34925b38af3ce89f24174f33588c088ef80929cb2e3</citedby><cites>FETCH-LOGICAL-c316t-8bcbac849cae47d21e308a34925b38af3ce89f24174f33588c088ef80929cb2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00193-016-0645-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00193-016-0645-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Voelkel, S.</creatorcontrib><creatorcontrib>Raman, V.</creatorcontrib><creatorcontrib>Varghese, P. L.</creatorcontrib><title>Effect of thermal nonequilibrium on reactions in hydrogen combustion</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>The presence of shocks in scramjet internal flows introduces nonequilibrium of internal energy modes of the molecules. Here, the effect of vibrational nonequilibrium on key reactions of hydrogen–air combustion is studied. A quasi-classical trajectory (QCT) approach is used to derive reaction probability for nonequilibrium conditions using ab initio-derived potential energy surfaces. The reaction rates under nonequilibrium are studied using a two-temperature description, where the vibrational modes are assumed to be distributed according to a Boltzmann distribution at a characteristic vibrational temperature, in addition to a translational temperature describing the translational and rotational population distribution. At scramjet-relevant conditions, it is found that the nonequilibrium reaction rate depends not only on the level of vibrational excitation, but also on the reactants involved. Conventional two-temperature models for reaction rates, often derived using empirical means, were found to be inaccurate under these conditions, and modified parameters are proposed based on the QCT calculations. It is also found that models that include details of the reaction process through dissociation energy, for instance, provide a better description of nonequilibrium effects.</description><subject>Acoustics</subject><subject>Boltzmann distribution</subject><subject>Condensed Matter Physics</subject><subject>Energy of dissociation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Free energy</subject><subject>Heat and Mass Transfer</subject><subject>Heat of formation</subject><subject>Hydrogen combustion</subject><subject>Internal energy</subject><subject>Internal flow</subject><subject>Nonequilibrium conditions</subject><subject>Original Article</subject><subject>Parameter modification</subject><subject>Population distribution</subject><subject>Potential energy</subject><subject>Supersonic combustion ramjet engines</subject><subject>Thermodynamics</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9gsMRue7SR-GVEpH1IlFpgtx7XbVI3d2snQf0-qMLAwPenq3PukQ8g9h0cOoJ4yAK8lA14xqIqSwQWZ8UIKJngpL8kMaomMC1TX5Cbn3UirSqkZeVl672xPo6f91qXO7GmIwR2Hdt82qR06GgNNzti-jSHTNtDtaZ3ixgVqY9cM-Zzfkitv9tnd_d45-X5dfi3e2erz7WPxvGJW8qpn2NjGWCxqa1yh1oI7CWhkUYuykWi8tA5rLwquCi9liWgB0XmEWtS2EU7OycO0e0jxOLjc610cUhhfao4IqLCqxEjxibIp5pyc14fUdiadNAd9lqUnWXqUpc-yNIwdMXXyyIaNS3-W_y39AF1ZbHY</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Voelkel, S.</creator><creator>Raman, V.</creator><creator>Varghese, P. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Effect of thermal nonequilibrium on reactions in hydrogen combustion</title><author>Voelkel, S. ; Raman, V. ; Varghese, P. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8bcbac849cae47d21e308a34925b38af3ce89f24174f33588c088ef80929cb2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustics</topic><topic>Boltzmann distribution</topic><topic>Condensed Matter Physics</topic><topic>Energy of dissociation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Free energy</topic><topic>Heat and Mass Transfer</topic><topic>Heat of formation</topic><topic>Hydrogen combustion</topic><topic>Internal energy</topic><topic>Internal flow</topic><topic>Nonequilibrium conditions</topic><topic>Original Article</topic><topic>Parameter modification</topic><topic>Population distribution</topic><topic>Potential energy</topic><topic>Supersonic combustion ramjet engines</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voelkel, S.</creatorcontrib><creatorcontrib>Raman, V.</creatorcontrib><creatorcontrib>Varghese, P. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voelkel, S.</au><au>Raman, V.</au><au>Varghese, P. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of thermal nonequilibrium on reactions in hydrogen combustion</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>26</volume><issue>5</issue><spage>539</spage><epage>549</epage><pages>539-549</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>The presence of shocks in scramjet internal flows introduces nonequilibrium of internal energy modes of the molecules. Here, the effect of vibrational nonequilibrium on key reactions of hydrogen–air combustion is studied. A quasi-classical trajectory (QCT) approach is used to derive reaction probability for nonequilibrium conditions using ab initio-derived potential energy surfaces. The reaction rates under nonequilibrium are studied using a two-temperature description, where the vibrational modes are assumed to be distributed according to a Boltzmann distribution at a characteristic vibrational temperature, in addition to a translational temperature describing the translational and rotational population distribution. At scramjet-relevant conditions, it is found that the nonequilibrium reaction rate depends not only on the level of vibrational excitation, but also on the reactants involved. Conventional two-temperature models for reaction rates, often derived using empirical means, were found to be inaccurate under these conditions, and modified parameters are proposed based on the QCT calculations. It is also found that models that include details of the reaction process through dissociation energy, for instance, provide a better description of nonequilibrium effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-016-0645-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-1287
ispartof Shock waves, 2016-09, Vol.26 (5), p.539-549
issn 0938-1287
1432-2153
language eng
recordid cdi_proquest_journals_1880878662
source SpringerLink Journals - AutoHoldings
subjects Acoustics
Boltzmann distribution
Condensed Matter Physics
Energy of dissociation
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid- and Aerodynamics
Free energy
Heat and Mass Transfer
Heat of formation
Hydrogen combustion
Internal energy
Internal flow
Nonequilibrium conditions
Original Article
Parameter modification
Population distribution
Potential energy
Supersonic combustion ramjet engines
Thermodynamics
title Effect of thermal nonequilibrium on reactions in hydrogen combustion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20thermal%20nonequilibrium%20on%20reactions%20in%20hydrogen%20combustion&rft.jtitle=Shock%20waves&rft.au=Voelkel,%20S.&rft.date=2016-09-01&rft.volume=26&rft.issue=5&rft.spage=539&rft.epage=549&rft.pages=539-549&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-016-0645-0&rft_dat=%3Cproquest_cross%3E1880878662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880878662&rft_id=info:pmid/&rfr_iscdi=true