Viscous solution of the triple-shock reflection problem

The reflection of a triple-shock configuration was studied numerically in two dimensions using the Navier–Stokes equations. The flow field was initialized using three shock theory, and the reflection of the triple point on a plane of symmetry was studied. The conditions simulated a stoichiometric me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock waves 2016-09, Vol.26 (5), p.551-560
Hauptverfasser: Lau-Chapdelaine, S. S.-M., Radulescu, M. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 5
container_start_page 551
container_title Shock waves
container_volume 26
creator Lau-Chapdelaine, S. S.-M.
Radulescu, M. I.
description The reflection of a triple-shock configuration was studied numerically in two dimensions using the Navier–Stokes equations. The flow field was initialized using three shock theory, and the reflection of the triple point on a plane of symmetry was studied. The conditions simulated a stoichiometric methane-oxygen detonation cell at low pressure on time scales preceding ignition when the gas was assumed to be inert. Viscosity was found to play an important role on some shock reflection mechanisms believed to accelerate reaction rates in detonations when time scales are small. A small wall jet was present in the double Mach reflection and increased in size with Reynolds number, eventually forming a small vortex. Kelvin–Helmholtz instabilities were absent, and there was no Mach stem bifurcation at Reynolds numbers corresponding to when the Mach stem had travelled distances on the scale of the induction length. Kelvin–Helmholtz instabilities are found to not likely be a source of rapid reactions in detonations at time scales commensurate with the ignition delay behind the Mach stem.
doi_str_mv 10.1007/s00193-016-0674-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880878307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880878307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-789811d028300c1deddcd7dbcf3f6edb705c1d5e6535acb3034c649d3089abcd3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgiMRvu4sR2RlTxT6rEAqxWYjs0Ja2DLxn49riEgYXppLvfe-_0GLtEuEYAdUMAWAkOKDlIVXB9xBZYiJznWIpjtoBKaI65VqfsjGibaCWVWjD11pENE2UU-mnswj4LbTZufDbGbug9p02wH1n0be_tz3mIoen97pydtHVP_uJ3Ltnr_d3L6pGvnx-eVrdrbgXKkStdaUQHuRYAFp13zjrlGtuKVnrXKCjTtvSyFGVtGwGisLKonABd1Y11YsmuZt-U-zl5Gs02THGfIg1qDVolY5UonCkbA1H61gyx29XxyyCYQz9m7sekfsyhH6OTJp81lNj9u49_nP8VfQMqzGgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880878307</pqid></control><display><type>article</type><title>Viscous solution of the triple-shock reflection problem</title><source>Springer Nature - Complete Springer Journals</source><creator>Lau-Chapdelaine, S. S.-M. ; Radulescu, M. I.</creator><creatorcontrib>Lau-Chapdelaine, S. S.-M. ; Radulescu, M. I.</creatorcontrib><description>The reflection of a triple-shock configuration was studied numerically in two dimensions using the Navier–Stokes equations. The flow field was initialized using three shock theory, and the reflection of the triple point on a plane of symmetry was studied. The conditions simulated a stoichiometric methane-oxygen detonation cell at low pressure on time scales preceding ignition when the gas was assumed to be inert. Viscosity was found to play an important role on some shock reflection mechanisms believed to accelerate reaction rates in detonations when time scales are small. A small wall jet was present in the double Mach reflection and increased in size with Reynolds number, eventually forming a small vortex. Kelvin–Helmholtz instabilities were absent, and there was no Mach stem bifurcation at Reynolds numbers corresponding to when the Mach stem had travelled distances on the scale of the induction length. Kelvin–Helmholtz instabilities are found to not likely be a source of rapid reactions in detonations at time scales commensurate with the ignition delay behind the Mach stem.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-016-0674-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Condensed Matter Physics ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Navier-Stokes equations ; Original Article ; Thermodynamics</subject><ispartof>Shock waves, 2016-09, Vol.26 (5), p.551-560</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-789811d028300c1deddcd7dbcf3f6edb705c1d5e6535acb3034c649d3089abcd3</citedby><cites>FETCH-LOGICAL-c316t-789811d028300c1deddcd7dbcf3f6edb705c1d5e6535acb3034c649d3089abcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00193-016-0674-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00193-016-0674-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lau-Chapdelaine, S. S.-M.</creatorcontrib><creatorcontrib>Radulescu, M. I.</creatorcontrib><title>Viscous solution of the triple-shock reflection problem</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>The reflection of a triple-shock configuration was studied numerically in two dimensions using the Navier–Stokes equations. The flow field was initialized using three shock theory, and the reflection of the triple point on a plane of symmetry was studied. The conditions simulated a stoichiometric methane-oxygen detonation cell at low pressure on time scales preceding ignition when the gas was assumed to be inert. Viscosity was found to play an important role on some shock reflection mechanisms believed to accelerate reaction rates in detonations when time scales are small. A small wall jet was present in the double Mach reflection and increased in size with Reynolds number, eventually forming a small vortex. Kelvin–Helmholtz instabilities were absent, and there was no Mach stem bifurcation at Reynolds numbers corresponding to when the Mach stem had travelled distances on the scale of the induction length. Kelvin–Helmholtz instabilities are found to not likely be a source of rapid reactions in detonations at time scales commensurate with the ignition delay behind the Mach stem.</description><subject>Acoustics</subject><subject>Condensed Matter Physics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Navier-Stokes equations</subject><subject>Original Article</subject><subject>Thermodynamics</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqXwAdgiMRvu4sR2RlTxT6rEAqxWYjs0Ja2DLxn49riEgYXppLvfe-_0GLtEuEYAdUMAWAkOKDlIVXB9xBZYiJznWIpjtoBKaI65VqfsjGibaCWVWjD11pENE2UU-mnswj4LbTZufDbGbug9p02wH1n0be_tz3mIoen97pydtHVP_uJ3Ltnr_d3L6pGvnx-eVrdrbgXKkStdaUQHuRYAFp13zjrlGtuKVnrXKCjTtvSyFGVtGwGisLKonABd1Y11YsmuZt-U-zl5Gs02THGfIg1qDVolY5UonCkbA1H61gyx29XxyyCYQz9m7sekfsyhH6OTJp81lNj9u49_nP8VfQMqzGgw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Lau-Chapdelaine, S. S.-M.</creator><creator>Radulescu, M. I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Viscous solution of the triple-shock reflection problem</title><author>Lau-Chapdelaine, S. S.-M. ; Radulescu, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-789811d028300c1deddcd7dbcf3f6edb705c1d5e6535acb3034c649d3089abcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustics</topic><topic>Condensed Matter Physics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Navier-Stokes equations</topic><topic>Original Article</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau-Chapdelaine, S. S.-M.</creatorcontrib><creatorcontrib>Radulescu, M. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau-Chapdelaine, S. S.-M.</au><au>Radulescu, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscous solution of the triple-shock reflection problem</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>26</volume><issue>5</issue><spage>551</spage><epage>560</epage><pages>551-560</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>The reflection of a triple-shock configuration was studied numerically in two dimensions using the Navier–Stokes equations. The flow field was initialized using three shock theory, and the reflection of the triple point on a plane of symmetry was studied. The conditions simulated a stoichiometric methane-oxygen detonation cell at low pressure on time scales preceding ignition when the gas was assumed to be inert. Viscosity was found to play an important role on some shock reflection mechanisms believed to accelerate reaction rates in detonations when time scales are small. A small wall jet was present in the double Mach reflection and increased in size with Reynolds number, eventually forming a small vortex. Kelvin–Helmholtz instabilities were absent, and there was no Mach stem bifurcation at Reynolds numbers corresponding to when the Mach stem had travelled distances on the scale of the induction length. Kelvin–Helmholtz instabilities are found to not likely be a source of rapid reactions in detonations at time scales commensurate with the ignition delay behind the Mach stem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-016-0674-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-1287
ispartof Shock waves, 2016-09, Vol.26 (5), p.551-560
issn 0938-1287
1432-2153
language eng
recordid cdi_proquest_journals_1880878307
source Springer Nature - Complete Springer Journals
subjects Acoustics
Condensed Matter Physics
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid- and Aerodynamics
Heat and Mass Transfer
Navier-Stokes equations
Original Article
Thermodynamics
title Viscous solution of the triple-shock reflection problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscous%20solution%20of%20the%20triple-shock%20reflection%20problem&rft.jtitle=Shock%20waves&rft.au=Lau-Chapdelaine,%20S.%20S.-M.&rft.date=2016-09-01&rft.volume=26&rft.issue=5&rft.spage=551&rft.epage=560&rft.pages=551-560&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-016-0674-8&rft_dat=%3Cproquest_cross%3E1880878307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880878307&rft_id=info:pmid/&rfr_iscdi=true