First-order chemical reaction networks I: theoretical considerations
Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical r...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2016-10, Vol.54 (9), p.1863-1878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1878 |
---|---|
container_issue | 9 |
container_start_page | 1863 |
container_title | Journal of mathematical chemistry |
container_volume | 54 |
creator | Tóbiás, Roland Stacho, László L. Tasi, Gyula |
description | Our former study Tóbiás and Tasi (J Math Chem 54:85,
2016
) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks (
FCRN
s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60,
2009
). First, it is proved that an
FCRN
is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative
FCRN
s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an
FCRN
. Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal)
FCRN
is presented which has algebraically exact solution. |
doi_str_mv | 10.1007/s10910-016-0655-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880875564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880875564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053</originalsourceid><addsrcrecordid>eNp1kE1PAyEQQInRxFr9Ad428YwOLCzgzVSrJk286JkgH3Zru1SgMf57qevBi6e5vDczeQidE7gkAOIqE1AEMJAOQ8c5pgdoQrigWEolDtEEKFdYCUWO0UnOKwBQspMTdDvvUy44JudTY5d-01uzbpI3tvRxaAZfPmN6z83jdVOWPiZffgAbh9xXxeypfIqOgllnf_Y7p-hlfvc8e8CLp_vH2c0C25argjuwjkjDhAhMemvqn47yzjljVNuq1xC8ci2zlqvAqGXGBcG5EtS0zATg7RRdjHu3KX7sfC56FXdpqCc1kRJkpTtWKTJSNsWckw96m_qNSV-agN7H0mMsXWPpfSxNq0NHJ1d2ePPpz-Z_pW_aY20g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880875564</pqid></control><display><type>article</type><title>First-order chemical reaction networks I: theoretical considerations</title><source>SpringerNature Journals</source><creator>Tóbiás, Roland ; Stacho, László L. ; Tasi, Gyula</creator><creatorcontrib>Tóbiás, Roland ; Stacho, László L. ; Tasi, Gyula</creatorcontrib><description>Our former study Tóbiás and Tasi (J Math Chem 54:85,
2016
) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks (
FCRN
s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60,
2009
). First, it is proved that an
FCRN
is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative
FCRN
s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an
FCRN
. Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal)
FCRN
is presented which has algebraically exact solution.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-016-0655-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Eigenvalues ; Exact solutions ; Incompatibility ; Math. Applications in Chemistry ; Networks ; Original Paper ; Physical Chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2016-10, Vol.54 (9), p.1863-1878</ispartof><rights>Springer International Publishing Switzerland 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053</citedby><cites>FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-016-0655-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-016-0655-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Tóbiás, Roland</creatorcontrib><creatorcontrib>Stacho, László L.</creatorcontrib><creatorcontrib>Tasi, Gyula</creatorcontrib><title>First-order chemical reaction networks I: theoretical considerations</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>Our former study Tóbiás and Tasi (J Math Chem 54:85,
2016
) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks (
FCRN
s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60,
2009
). First, it is proved that an
FCRN
is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative
FCRN
s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an
FCRN
. Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal)
FCRN
is presented which has algebraically exact solution.</description><subject>Algebra</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Eigenvalues</subject><subject>Exact solutions</subject><subject>Incompatibility</subject><subject>Math. Applications in Chemistry</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAyEQQInRxFr9Ad428YwOLCzgzVSrJk286JkgH3Zru1SgMf57qevBi6e5vDczeQidE7gkAOIqE1AEMJAOQ8c5pgdoQrigWEolDtEEKFdYCUWO0UnOKwBQspMTdDvvUy44JudTY5d-01uzbpI3tvRxaAZfPmN6z83jdVOWPiZffgAbh9xXxeypfIqOgllnf_Y7p-hlfvc8e8CLp_vH2c0C25argjuwjkjDhAhMemvqn47yzjljVNuq1xC8ci2zlqvAqGXGBcG5EtS0zATg7RRdjHu3KX7sfC56FXdpqCc1kRJkpTtWKTJSNsWckw96m_qNSV-agN7H0mMsXWPpfSxNq0NHJ1d2ePPpz-Z_pW_aY20g</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Tóbiás, Roland</creator><creator>Stacho, László L.</creator><creator>Tasi, Gyula</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>First-order chemical reaction networks I: theoretical considerations</title><author>Tóbiás, Roland ; Stacho, László L. ; Tasi, Gyula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Eigenvalues</topic><topic>Exact solutions</topic><topic>Incompatibility</topic><topic>Math. Applications in Chemistry</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tóbiás, Roland</creatorcontrib><creatorcontrib>Stacho, László L.</creatorcontrib><creatorcontrib>Tasi, Gyula</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tóbiás, Roland</au><au>Stacho, László L.</au><au>Tasi, Gyula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-order chemical reaction networks I: theoretical considerations</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>54</volume><issue>9</issue><spage>1863</spage><epage>1878</epage><pages>1863-1878</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>Our former study Tóbiás and Tasi (J Math Chem 54:85,
2016
) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks (
FCRN
s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60,
2009
). First, it is proved that an
FCRN
is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative
FCRN
s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an
FCRN
. Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal)
FCRN
is presented which has algebraically exact solution.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-016-0655-2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2016-10, Vol.54 (9), p.1863-1878 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_1880875564 |
source | SpringerNature Journals |
subjects | Algebra Chemical reactions Chemistry Chemistry and Materials Science Eigenvalues Exact solutions Incompatibility Math. Applications in Chemistry Networks Original Paper Physical Chemistry Theoretical and Computational Chemistry |
title | First-order chemical reaction networks I: theoretical considerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-order%20chemical%20reaction%20networks%20I:%20theoretical%20considerations&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=T%C3%B3bi%C3%A1s,%20Roland&rft.date=2016-10-01&rft.volume=54&rft.issue=9&rft.spage=1863&rft.epage=1878&rft.pages=1863-1878&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-016-0655-2&rft_dat=%3Cproquest_cross%3E1880875564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880875564&rft_id=info:pmid/&rfr_iscdi=true |