First-order chemical reaction networks I: theoretical considerations

Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2016-10, Vol.54 (9), p.1863-1878
Hauptverfasser: Tóbiás, Roland, Stacho, László L., Tasi, Gyula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1878
container_issue 9
container_start_page 1863
container_title Journal of mathematical chemistry
container_volume 54
creator Tóbiás, Roland
Stacho, László L.
Tasi, Gyula
description Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks ( FCRN s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60, 2009 ). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative FCRN s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an FCRN . Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal) FCRN is presented which has algebraically exact solution.
doi_str_mv 10.1007/s10910-016-0655-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880875564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880875564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053</originalsourceid><addsrcrecordid>eNp1kE1PAyEQQInRxFr9Ad428YwOLCzgzVSrJk286JkgH3Zru1SgMf57qevBi6e5vDczeQidE7gkAOIqE1AEMJAOQ8c5pgdoQrigWEolDtEEKFdYCUWO0UnOKwBQspMTdDvvUy44JudTY5d-01uzbpI3tvRxaAZfPmN6z83jdVOWPiZffgAbh9xXxeypfIqOgllnf_Y7p-hlfvc8e8CLp_vH2c0C25argjuwjkjDhAhMemvqn47yzjljVNuq1xC8ci2zlqvAqGXGBcG5EtS0zATg7RRdjHu3KX7sfC56FXdpqCc1kRJkpTtWKTJSNsWckw96m_qNSV-agN7H0mMsXWPpfSxNq0NHJ1d2ePPpz-Z_pW_aY20g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880875564</pqid></control><display><type>article</type><title>First-order chemical reaction networks I: theoretical considerations</title><source>SpringerNature Journals</source><creator>Tóbiás, Roland ; Stacho, László L. ; Tasi, Gyula</creator><creatorcontrib>Tóbiás, Roland ; Stacho, László L. ; Tasi, Gyula</creatorcontrib><description>Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks ( FCRN s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60, 2009 ). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative FCRN s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an FCRN . Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal) FCRN is presented which has algebraically exact solution.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-016-0655-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Eigenvalues ; Exact solutions ; Incompatibility ; Math. Applications in Chemistry ; Networks ; Original Paper ; Physical Chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2016-10, Vol.54 (9), p.1863-1878</ispartof><rights>Springer International Publishing Switzerland 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053</citedby><cites>FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-016-0655-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-016-0655-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Tóbiás, Roland</creatorcontrib><creatorcontrib>Stacho, László L.</creatorcontrib><creatorcontrib>Tasi, Gyula</creatorcontrib><title>First-order chemical reaction networks I: theoretical considerations</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks ( FCRN s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60, 2009 ). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative FCRN s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an FCRN . Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal) FCRN is presented which has algebraically exact solution.</description><subject>Algebra</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Eigenvalues</subject><subject>Exact solutions</subject><subject>Incompatibility</subject><subject>Math. Applications in Chemistry</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAyEQQInRxFr9Ad428YwOLCzgzVSrJk286JkgH3Zru1SgMf57qevBi6e5vDczeQidE7gkAOIqE1AEMJAOQ8c5pgdoQrigWEolDtEEKFdYCUWO0UnOKwBQspMTdDvvUy44JudTY5d-01uzbpI3tvRxaAZfPmN6z83jdVOWPiZffgAbh9xXxeypfIqOgllnf_Y7p-hlfvc8e8CLp_vH2c0C25argjuwjkjDhAhMemvqn47yzjljVNuq1xC8ci2zlqvAqGXGBcG5EtS0zATg7RRdjHu3KX7sfC56FXdpqCc1kRJkpTtWKTJSNsWckw96m_qNSV-agN7H0mMsXWPpfSxNq0NHJ1d2ePPpz-Z_pW_aY20g</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Tóbiás, Roland</creator><creator>Stacho, László L.</creator><creator>Tasi, Gyula</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>First-order chemical reaction networks I: theoretical considerations</title><author>Tóbiás, Roland ; Stacho, László L. ; Tasi, Gyula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Eigenvalues</topic><topic>Exact solutions</topic><topic>Incompatibility</topic><topic>Math. Applications in Chemistry</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tóbiás, Roland</creatorcontrib><creatorcontrib>Stacho, László L.</creatorcontrib><creatorcontrib>Tasi, Gyula</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tóbiás, Roland</au><au>Stacho, László L.</au><au>Tasi, Gyula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-order chemical reaction networks I: theoretical considerations</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>54</volume><issue>9</issue><spage>1863</spage><epage>1878</epage><pages>1863-1878</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks ( FCRN s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60, 2009 ). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative FCRN s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an FCRN . Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal) FCRN is presented which has algebraically exact solution.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-016-0655-2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2016-10, Vol.54 (9), p.1863-1878
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_1880875564
source SpringerNature Journals
subjects Algebra
Chemical reactions
Chemistry
Chemistry and Materials Science
Eigenvalues
Exact solutions
Incompatibility
Math. Applications in Chemistry
Networks
Original Paper
Physical Chemistry
Theoretical and Computational Chemistry
title First-order chemical reaction networks I: theoretical considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-order%20chemical%20reaction%20networks%20I:%20theoretical%20considerations&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=T%C3%B3bi%C3%A1s,%20Roland&rft.date=2016-10-01&rft.volume=54&rft.issue=9&rft.spage=1863&rft.epage=1878&rft.pages=1863-1878&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-016-0655-2&rft_dat=%3Cproquest_cross%3E1880875564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880875564&rft_id=info:pmid/&rfr_iscdi=true