Problems in Calculating Moments and Distribution Functions of Ladder Heights
The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the n th convergent...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016-10, Vol.218 (2), p.195-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 2 |
container_start_page | 195 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 218 |
creator | Lazovskaya, T. V. Nagaev, S. V. |
description | The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the
n
th convergents of continued fractions. The moments are calculated by S. Nagaev’s formulas, including solution of the Frobenius equation and applying the Fa di Bruno formulas for higher derivatives. The problem of high precision calculations is studied. |
doi_str_mv | 10.1007/s10958-016-3021-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880875113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501598608</galeid><sourcerecordid>A501598608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5329-bfb9ec7a69809a8a0b95562bcf0ba39cc9e3d4bd4989534e1398f7d5db0d25143</originalsourceid><addsrcrecordid>eNp1kUtr3DAURk1poHn0B3Qn6KoLpZJl2dIyTJImMKWhj7XQ49pVsKVEkqH599UwhXZgihb6EOfowv2a5h0ll5SQ4WOmRHKBCe0xIy3F8lVzSvnAsBgkf10zGVrM2NC9ac5yfiTV6QU7bbYPKZoZlox8QBs923XWxYcJfY4LhJKRDg5d-1ySN2vxMaDbNdhdyCiOaKudg4TuwE8_S75oTkY9Z3j75z5vftzefN_c4e2XT_ebqy22nLUSm9FIsIPupSBSC02M5LxvjR2J0UxaK4G5zrhOCslZB5RJMQ6OO0Ncy2nHzpv3-3-fUnxeIRf1GNcU6khFhSBi4JSyv9SkZ1A-jLEkbRefrbrihHIpeiIqhY9QEwRIeo4BRl-fD_jLI3w9DhZvjwofDoTKFPhVJr3mrO6_fT1k6Z61KeacYFRPyS86vShK1K5nte9Z1Z7Vrmclq9PunVzZMEH6Zxn_lX4D5LOngA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880875113</pqid></control><display><type>article</type><title>Problems in Calculating Moments and Distribution Functions of Ladder Heights</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lazovskaya, T. V. ; Nagaev, S. V.</creator><creatorcontrib>Lazovskaya, T. V. ; Nagaev, S. V.</creatorcontrib><description>The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the
n
th convergents of continued fractions. The moments are calculated by S. Nagaev’s formulas, including solution of the Frobenius equation and applying the Fa di Bruno formulas for higher derivatives. The problem of high precision calculations is studied.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-016-3021-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chebyshev approximation ; Distribution functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Probability distributions</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2016-10, Vol.218 (2), p.195-207</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5329-bfb9ec7a69809a8a0b95562bcf0ba39cc9e3d4bd4989534e1398f7d5db0d25143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-016-3021-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-016-3021-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Lazovskaya, T. V.</creatorcontrib><creatorcontrib>Nagaev, S. V.</creatorcontrib><title>Problems in Calculating Moments and Distribution Functions of Ladder Heights</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the
n
th convergents of continued fractions. The moments are calculated by S. Nagaev’s formulas, including solution of the Frobenius equation and applying the Fa di Bruno formulas for higher derivatives. The problem of high precision calculations is studied.</description><subject>Chebyshev approximation</subject><subject>Distribution functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability distributions</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3DAURk1poHn0B3Qn6KoLpZJl2dIyTJImMKWhj7XQ49pVsKVEkqH599UwhXZgihb6EOfowv2a5h0ll5SQ4WOmRHKBCe0xIy3F8lVzSvnAsBgkf10zGVrM2NC9ac5yfiTV6QU7bbYPKZoZlox8QBs923XWxYcJfY4LhJKRDg5d-1ySN2vxMaDbNdhdyCiOaKudg4TuwE8_S75oTkY9Z3j75z5vftzefN_c4e2XT_ebqy22nLUSm9FIsIPupSBSC02M5LxvjR2J0UxaK4G5zrhOCslZB5RJMQ6OO0Ncy2nHzpv3-3-fUnxeIRf1GNcU6khFhSBi4JSyv9SkZ1A-jLEkbRefrbrihHIpeiIqhY9QEwRIeo4BRl-fD_jLI3w9DhZvjwofDoTKFPhVJr3mrO6_fT1k6Z61KeacYFRPyS86vShK1K5nte9Z1Z7Vrmclq9PunVzZMEH6Zxn_lX4D5LOngA</recordid><startdate>20161002</startdate><enddate>20161002</enddate><creator>Lazovskaya, T. V.</creator><creator>Nagaev, S. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20161002</creationdate><title>Problems in Calculating Moments and Distribution Functions of Ladder Heights</title><author>Lazovskaya, T. V. ; Nagaev, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5329-bfb9ec7a69809a8a0b95562bcf0ba39cc9e3d4bd4989534e1398f7d5db0d25143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chebyshev approximation</topic><topic>Distribution functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazovskaya, T. V.</creatorcontrib><creatorcontrib>Nagaev, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazovskaya, T. V.</au><au>Nagaev, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Problems in Calculating Moments and Distribution Functions of Ladder Heights</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2016-10-02</date><risdate>2016</risdate><volume>218</volume><issue>2</issue><spage>195</spage><epage>207</epage><pages>195-207</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the
n
th convergents of continued fractions. The moments are calculated by S. Nagaev’s formulas, including solution of the Frobenius equation and applying the Fa di Bruno formulas for higher derivatives. The problem of high precision calculations is studied.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-016-3021-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2016-10, Vol.218 (2), p.195-207 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_1880875113 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chebyshev approximation Distribution functions Mathematical analysis Mathematics Mathematics and Statistics Probability distributions |
title | Problems in Calculating Moments and Distribution Functions of Ladder Heights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Problems%20in%20Calculating%20Moments%20and%20Distribution%20Functions%20of%20Ladder%20Heights&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Lazovskaya,%20T.%20V.&rft.date=2016-10-02&rft.volume=218&rft.issue=2&rft.spage=195&rft.epage=207&rft.pages=195-207&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-016-3021-9&rft_dat=%3Cgale_proqu%3EA501598608%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880875113&rft_id=info:pmid/&rft_galeid=A501598608&rfr_iscdi=true |