Problems in Calculating Moments and Distribution Functions of Ladder Heights

The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the n th convergent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016-10, Vol.218 (2), p.195-207
Hauptverfasser: Lazovskaya, T. V., Nagaev, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 2
container_start_page 195
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 218
creator Lazovskaya, T. V.
Nagaev, S. V.
description The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the n th convergents of continued fractions. The moments are calculated by S. Nagaev’s formulas, including solution of the Frobenius equation and applying the Fa di Bruno formulas for higher derivatives. The problem of high precision calculations is studied.
doi_str_mv 10.1007/s10958-016-3021-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880875113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501598608</galeid><sourcerecordid>A501598608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5329-bfb9ec7a69809a8a0b95562bcf0ba39cc9e3d4bd4989534e1398f7d5db0d25143</originalsourceid><addsrcrecordid>eNp1kUtr3DAURk1poHn0B3Qn6KoLpZJl2dIyTJImMKWhj7XQ49pVsKVEkqH599UwhXZgihb6EOfowv2a5h0ll5SQ4WOmRHKBCe0xIy3F8lVzSvnAsBgkf10zGVrM2NC9ac5yfiTV6QU7bbYPKZoZlox8QBs923XWxYcJfY4LhJKRDg5d-1ySN2vxMaDbNdhdyCiOaKudg4TuwE8_S75oTkY9Z3j75z5vftzefN_c4e2XT_ebqy22nLUSm9FIsIPupSBSC02M5LxvjR2J0UxaK4G5zrhOCslZB5RJMQ6OO0Ncy2nHzpv3-3-fUnxeIRf1GNcU6khFhSBi4JSyv9SkZ1A-jLEkbRefrbrihHIpeiIqhY9QEwRIeo4BRl-fD_jLI3w9DhZvjwofDoTKFPhVJr3mrO6_fT1k6Z61KeacYFRPyS86vShK1K5nte9Z1Z7Vrmclq9PunVzZMEH6Zxn_lX4D5LOngA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880875113</pqid></control><display><type>article</type><title>Problems in Calculating Moments and Distribution Functions of Ladder Heights</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lazovskaya, T. V. ; Nagaev, S. V.</creator><creatorcontrib>Lazovskaya, T. V. ; Nagaev, S. V.</creatorcontrib><description>The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the n th convergents of continued fractions. The moments are calculated by S. Nagaev’s formulas, including solution of the Frobenius equation and applying the Fa di Bruno formulas for higher derivatives. The problem of high precision calculations is studied.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-016-3021-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chebyshev approximation ; Distribution functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Probability distributions</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2016-10, Vol.218 (2), p.195-207</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5329-bfb9ec7a69809a8a0b95562bcf0ba39cc9e3d4bd4989534e1398f7d5db0d25143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-016-3021-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-016-3021-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Lazovskaya, T. V.</creatorcontrib><creatorcontrib>Nagaev, S. V.</creatorcontrib><title>Problems in Calculating Moments and Distribution Functions of Ladder Heights</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the n th convergents of continued fractions. The moments are calculated by S. Nagaev’s formulas, including solution of the Frobenius equation and applying the Fa di Bruno formulas for higher derivatives. The problem of high precision calculations is studied.</description><subject>Chebyshev approximation</subject><subject>Distribution functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability distributions</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3DAURk1poHn0B3Qn6KoLpZJl2dIyTJImMKWhj7XQ49pVsKVEkqH599UwhXZgihb6EOfowv2a5h0ll5SQ4WOmRHKBCe0xIy3F8lVzSvnAsBgkf10zGVrM2NC9ac5yfiTV6QU7bbYPKZoZlox8QBs923XWxYcJfY4LhJKRDg5d-1ySN2vxMaDbNdhdyCiOaKudg4TuwE8_S75oTkY9Z3j75z5vftzefN_c4e2XT_ebqy22nLUSm9FIsIPupSBSC02M5LxvjR2J0UxaK4G5zrhOCslZB5RJMQ6OO0Ncy2nHzpv3-3-fUnxeIRf1GNcU6khFhSBi4JSyv9SkZ1A-jLEkbRefrbrihHIpeiIqhY9QEwRIeo4BRl-fD_jLI3w9DhZvjwofDoTKFPhVJr3mrO6_fT1k6Z61KeacYFRPyS86vShK1K5nte9Z1Z7Vrmclq9PunVzZMEH6Zxn_lX4D5LOngA</recordid><startdate>20161002</startdate><enddate>20161002</enddate><creator>Lazovskaya, T. V.</creator><creator>Nagaev, S. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20161002</creationdate><title>Problems in Calculating Moments and Distribution Functions of Ladder Heights</title><author>Lazovskaya, T. V. ; Nagaev, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5329-bfb9ec7a69809a8a0b95562bcf0ba39cc9e3d4bd4989534e1398f7d5db0d25143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chebyshev approximation</topic><topic>Distribution functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazovskaya, T. V.</creatorcontrib><creatorcontrib>Nagaev, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazovskaya, T. V.</au><au>Nagaev, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Problems in Calculating Moments and Distribution Functions of Ladder Heights</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2016-10-02</date><risdate>2016</risdate><volume>218</volume><issue>2</issue><spage>195</spage><epage>207</epage><pages>195-207</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The problem of approximate calculation of distribution functions of ladder heights is considered in the context of the finite number of its known moments. This problem is solved by means of the Chebyshev continued fractions method. The midpoint is finding the terms of fraction of the n th convergents of continued fractions. The moments are calculated by S. Nagaev’s formulas, including solution of the Frobenius equation and applying the Fa di Bruno formulas for higher derivatives. The problem of high precision calculations is studied.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-016-3021-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2016-10, Vol.218 (2), p.195-207
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_1880875113
source SpringerLink Journals - AutoHoldings
subjects Chebyshev approximation
Distribution functions
Mathematical analysis
Mathematics
Mathematics and Statistics
Probability distributions
title Problems in Calculating Moments and Distribution Functions of Ladder Heights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Problems%20in%20Calculating%20Moments%20and%20Distribution%20Functions%20of%20Ladder%20Heights&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Lazovskaya,%20T.%20V.&rft.date=2016-10-02&rft.volume=218&rft.issue=2&rft.spage=195&rft.epage=207&rft.pages=195-207&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-016-3021-9&rft_dat=%3Cgale_proqu%3EA501598608%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880875113&rft_id=info:pmid/&rft_galeid=A501598608&rfr_iscdi=true