Minkowski symmetrizations of star shaped sets
We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in R n arbitrarily close (in the Hausdorff metric) to the Euclidean ball.
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2016-10, Vol.184 (1), p.115-119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 1 |
container_start_page | 115 |
container_title | Geometriae dedicata |
container_volume | 184 |
creator | Florentin, D. I. Segal, A. |
description | We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in
R
n
arbitrarily close (in the Hausdorff metric) to the Euclidean ball. |
doi_str_mv | 10.1007/s10711-016-0159-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880872465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880872465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-99f10786b5572e187ab99490cfc75dfd8529d8de0243fcd84a0478c32a18340a3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwicTbsOnZsH1HFn1TEBc6Wm9iQlibFmwq1T4-rcODCYTWXmdnRx9glwjUC6BtC0IgcsMqnLN8fsQkqLbjFyhyzCYCsuNJKnbIzoiUAWK3FhPHntlv137RqC9qt12FI7d4Pbd9R0ceCBp8K-vCb0BQUBjpnJ9F_Urj41Sl7u797nT3y-cvD0-x2zusSq4FbG_McUy1UXhDQaL-wVlqoY61VExujhG1ME0DIMtaNkR6kNnUpPJpSgi-n7Grs3aT-axtocMt-m7r80qExYLSQlcouHF116olSiG6T2rVPO4fgDlTcSMVlKu5Axe1zRowZyt7uPaQ_zf-GfgAlKmQr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880872465</pqid></control><display><type>article</type><title>Minkowski symmetrizations of star shaped sets</title><source>SpringerNature Journals</source><creator>Florentin, D. I. ; Segal, A.</creator><creatorcontrib>Florentin, D. I. ; Segal, A.</creatorcontrib><description>We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in
R
n
arbitrarily close (in the Hausdorff metric) to the Euclidean ball.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-016-0159-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology ; Upper bounds</subject><ispartof>Geometriae dedicata, 2016-10, Vol.184 (1), p.115-119</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-99f10786b5572e187ab99490cfc75dfd8529d8de0243fcd84a0478c32a18340a3</citedby><cites>FETCH-LOGICAL-c316t-99f10786b5572e187ab99490cfc75dfd8529d8de0243fcd84a0478c32a18340a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-016-0159-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-016-0159-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Florentin, D. I.</creatorcontrib><creatorcontrib>Segal, A.</creatorcontrib><title>Minkowski symmetrizations of star shaped sets</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in
R
n
arbitrarily close (in the Hausdorff metric) to the Euclidean ball.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><subject>Upper bounds</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwicTbsOnZsH1HFn1TEBc6Wm9iQlibFmwq1T4-rcODCYTWXmdnRx9glwjUC6BtC0IgcsMqnLN8fsQkqLbjFyhyzCYCsuNJKnbIzoiUAWK3FhPHntlv137RqC9qt12FI7d4Pbd9R0ceCBp8K-vCb0BQUBjpnJ9F_Urj41Sl7u797nT3y-cvD0-x2zusSq4FbG_McUy1UXhDQaL-wVlqoY61VExujhG1ME0DIMtaNkR6kNnUpPJpSgi-n7Grs3aT-axtocMt-m7r80qExYLSQlcouHF116olSiG6T2rVPO4fgDlTcSMVlKu5Axe1zRowZyt7uPaQ_zf-GfgAlKmQr</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Florentin, D. I.</creator><creator>Segal, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Minkowski symmetrizations of star shaped sets</title><author>Florentin, D. I. ; Segal, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-99f10786b5572e187ab99490cfc75dfd8529d8de0243fcd84a0478c32a18340a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florentin, D. I.</creatorcontrib><creatorcontrib>Segal, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florentin, D. I.</au><au>Segal, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minkowski symmetrizations of star shaped sets</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>184</volume><issue>1</issue><spage>115</spage><epage>119</epage><pages>115-119</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in
R
n
arbitrarily close (in the Hausdorff metric) to the Euclidean ball.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-016-0159-z</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2016-10, Vol.184 (1), p.115-119 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_proquest_journals_1880872465 |
source | SpringerNature Journals |
subjects | Algebraic Geometry Convex and Discrete Geometry Differential Geometry Hyperbolic Geometry Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology Upper bounds |
title | Minkowski symmetrizations of star shaped sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minkowski%20symmetrizations%20of%20star%20shaped%20sets&rft.jtitle=Geometriae%20dedicata&rft.au=Florentin,%20D.%20I.&rft.date=2016-10-01&rft.volume=184&rft.issue=1&rft.spage=115&rft.epage=119&rft.pages=115-119&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-016-0159-z&rft_dat=%3Cproquest_cross%3E1880872465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880872465&rft_id=info:pmid/&rfr_iscdi=true |