Minkowski symmetrizations of star shaped sets

We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in R n arbitrarily close (in the Hausdorff metric) to the Euclidean ball.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2016-10, Vol.184 (1), p.115-119
Hauptverfasser: Florentin, D. I., Segal, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 115
container_title Geometriae dedicata
container_volume 184
creator Florentin, D. I.
Segal, A.
description We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in R n arbitrarily close (in the Hausdorff metric) to the Euclidean ball.
doi_str_mv 10.1007/s10711-016-0159-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880872465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880872465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-99f10786b5572e187ab99490cfc75dfd8529d8de0243fcd84a0478c32a18340a3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwicTbsOnZsH1HFn1TEBc6Wm9iQlibFmwq1T4-rcODCYTWXmdnRx9glwjUC6BtC0IgcsMqnLN8fsQkqLbjFyhyzCYCsuNJKnbIzoiUAWK3FhPHntlv137RqC9qt12FI7d4Pbd9R0ceCBp8K-vCb0BQUBjpnJ9F_Urj41Sl7u797nT3y-cvD0-x2zusSq4FbG_McUy1UXhDQaL-wVlqoY61VExujhG1ME0DIMtaNkR6kNnUpPJpSgi-n7Grs3aT-axtocMt-m7r80qExYLSQlcouHF116olSiG6T2rVPO4fgDlTcSMVlKu5Axe1zRowZyt7uPaQ_zf-GfgAlKmQr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880872465</pqid></control><display><type>article</type><title>Minkowski symmetrizations of star shaped sets</title><source>SpringerNature Journals</source><creator>Florentin, D. I. ; Segal, A.</creator><creatorcontrib>Florentin, D. I. ; Segal, A.</creatorcontrib><description>We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in R n arbitrarily close (in the Hausdorff metric) to the Euclidean ball.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-016-0159-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology ; Upper bounds</subject><ispartof>Geometriae dedicata, 2016-10, Vol.184 (1), p.115-119</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-99f10786b5572e187ab99490cfc75dfd8529d8de0243fcd84a0478c32a18340a3</citedby><cites>FETCH-LOGICAL-c316t-99f10786b5572e187ab99490cfc75dfd8529d8de0243fcd84a0478c32a18340a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-016-0159-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-016-0159-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Florentin, D. I.</creatorcontrib><creatorcontrib>Segal, A.</creatorcontrib><title>Minkowski symmetrizations of star shaped sets</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in R n arbitrarily close (in the Hausdorff metric) to the Euclidean ball.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><subject>Upper bounds</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwicTbsOnZsH1HFn1TEBc6Wm9iQlibFmwq1T4-rcODCYTWXmdnRx9glwjUC6BtC0IgcsMqnLN8fsQkqLbjFyhyzCYCsuNJKnbIzoiUAWK3FhPHntlv137RqC9qt12FI7d4Pbd9R0ceCBp8K-vCb0BQUBjpnJ9F_Urj41Sl7u797nT3y-cvD0-x2zusSq4FbG_McUy1UXhDQaL-wVlqoY61VExujhG1ME0DIMtaNkR6kNnUpPJpSgi-n7Grs3aT-axtocMt-m7r80qExYLSQlcouHF116olSiG6T2rVPO4fgDlTcSMVlKu5Axe1zRowZyt7uPaQ_zf-GfgAlKmQr</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Florentin, D. I.</creator><creator>Segal, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Minkowski symmetrizations of star shaped sets</title><author>Florentin, D. I. ; Segal, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-99f10786b5572e187ab99490cfc75dfd8529d8de0243fcd84a0478c32a18340a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florentin, D. I.</creatorcontrib><creatorcontrib>Segal, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florentin, D. I.</au><au>Segal, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minkowski symmetrizations of star shaped sets</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>184</volume><issue>1</issue><spage>115</spage><epage>119</epage><pages>115-119</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We provide sharp upper bounds for the number of symmetrizations required to transform a star shaped set in R n arbitrarily close (in the Hausdorff metric) to the Euclidean ball.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-016-0159-z</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2016-10, Vol.184 (1), p.115-119
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_1880872465
source SpringerNature Journals
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Hyperbolic Geometry
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
Upper bounds
title Minkowski symmetrizations of star shaped sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minkowski%20symmetrizations%20of%20star%20shaped%20sets&rft.jtitle=Geometriae%20dedicata&rft.au=Florentin,%20D.%20I.&rft.date=2016-10-01&rft.volume=184&rft.issue=1&rft.spage=115&rft.epage=119&rft.pages=115-119&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-016-0159-z&rft_dat=%3Cproquest_cross%3E1880872465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880872465&rft_id=info:pmid/&rfr_iscdi=true