Family of quasi-monotonic finite-difference schemes of the second-order of approximation
Using a simple model of a linear transfer equation, a family of hybrid monotonic finite-difference schemes is constructed. By differential approximation analysis, it is shown that the resulting family yields a second-order approximation in the spatial variable, having minimal scheme viscosity and di...
Gespeichert in:
Veröffentlicht in: | Mathematical models and computer simulations 2016-09, Vol.8 (5), p.487-496 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 496 |
---|---|
container_issue | 5 |
container_start_page | 487 |
container_title | Mathematical models and computer simulations |
container_volume | 8 |
creator | Gushchin, V. A. |
description | Using a simple model of a linear transfer equation, a family of hybrid monotonic finite-difference schemes is constructed. By differential approximation analysis, it is shown that the resulting family yields a second-order approximation in the spatial variable, having minimal scheme viscosity and dispersion and being monotonic. It is demonstrated that the operability domain of the basic schemes, namely, the modified central difference schemes (MCDS) and the modified upwind difference schemes (MUDS), forms a nonempty set. A local criterion for switching between the basic schemes is proposed; this criterion employs the sign of the product of the velocity, as well as the first and second differences of the transferred functions at the considered point. Within the studied schemes, the optimal pair of basic schemes, possessing the above-mentioned properties and being closest to the third-order scheme, is obtained. On the solution of the Cauchy problem, the calculation results obtained using some well-known first-, second-, and third-order schemes are compared graphically. |
doi_str_mv | 10.1134/S2070048216050094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880872106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880872106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2314-a9e9da803d0d02ddc4d380341c5566ed60bf983101454a95d98a02dd735361e23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLcFz6uTj93NHqVYFQoeVPC2xGRiU7pJm2zB_nuzVEQQ5zIfPO87wxBySeGaUi5unhk0AEIyWkMF0IoTMhlHJYgWTn9qyc7JLKU15OCskVxOyNtC9W5zKIItdnuVXNkHH4bgnS6s827A0jhrMaLXWCS9wh7TCA-r3KIO3pQhGozjTG23MXy6Xg0u-AtyZtUm4ew7T8nr4u5l_lAun-4f57fLUjNORalabI2SwA0YYMZoYXjuBNVVVddoani3reQUqKiEaivTSjVyDa94TZHxKbk6-ubduz2moVuHffR5ZUelBNkwCnWm6JHSMaQU0XbbmA-Nh45CN_6w-_PDrGFHTcqs_8D4y_lf0ReNzHIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880872106</pqid></control><display><type>article</type><title>Family of quasi-monotonic finite-difference schemes of the second-order of approximation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gushchin, V. A.</creator><creatorcontrib>Gushchin, V. A.</creatorcontrib><description>Using a simple model of a linear transfer equation, a family of hybrid monotonic finite-difference schemes is constructed. By differential approximation analysis, it is shown that the resulting family yields a second-order approximation in the spatial variable, having minimal scheme viscosity and dispersion and being monotonic. It is demonstrated that the operability domain of the basic schemes, namely, the modified central difference schemes (MCDS) and the modified upwind difference schemes (MUDS), forms a nonempty set. A local criterion for switching between the basic schemes is proposed; this criterion employs the sign of the product of the velocity, as well as the first and second differences of the transferred functions at the considered point. Within the studied schemes, the optimal pair of basic schemes, possessing the above-mentioned properties and being closest to the third-order scheme, is obtained. On the solution of the Cauchy problem, the calculation results obtained using some well-known first-, second-, and third-order schemes are compared graphically.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048216050094</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Approximation ; Cauchy problems ; Criteria ; Finite difference method ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Simulation and Modeling</subject><ispartof>Mathematical models and computer simulations, 2016-09, Vol.8 (5), p.487-496</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2314-a9e9da803d0d02ddc4d380341c5566ed60bf983101454a95d98a02dd735361e23</citedby><cites>FETCH-LOGICAL-c2314-a9e9da803d0d02ddc4d380341c5566ed60bf983101454a95d98a02dd735361e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070048216050094$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070048216050094$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gushchin, V. A.</creatorcontrib><title>Family of quasi-monotonic finite-difference schemes of the second-order of approximation</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>Using a simple model of a linear transfer equation, a family of hybrid monotonic finite-difference schemes is constructed. By differential approximation analysis, it is shown that the resulting family yields a second-order approximation in the spatial variable, having minimal scheme viscosity and dispersion and being monotonic. It is demonstrated that the operability domain of the basic schemes, namely, the modified central difference schemes (MCDS) and the modified upwind difference schemes (MUDS), forms a nonempty set. A local criterion for switching between the basic schemes is proposed; this criterion employs the sign of the product of the velocity, as well as the first and second differences of the transferred functions at the considered point. Within the studied schemes, the optimal pair of basic schemes, possessing the above-mentioned properties and being closest to the third-order scheme, is obtained. On the solution of the Cauchy problem, the calculation results obtained using some well-known first-, second-, and third-order schemes are compared graphically.</description><subject>Approximation</subject><subject>Cauchy problems</subject><subject>Criteria</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Simulation and Modeling</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLcFz6uTj93NHqVYFQoeVPC2xGRiU7pJm2zB_nuzVEQQ5zIfPO87wxBySeGaUi5unhk0AEIyWkMF0IoTMhlHJYgWTn9qyc7JLKU15OCskVxOyNtC9W5zKIItdnuVXNkHH4bgnS6s827A0jhrMaLXWCS9wh7TCA-r3KIO3pQhGozjTG23MXy6Xg0u-AtyZtUm4ew7T8nr4u5l_lAun-4f57fLUjNORalabI2SwA0YYMZoYXjuBNVVVddoani3reQUqKiEaivTSjVyDa94TZHxKbk6-ubduz2moVuHffR5ZUelBNkwCnWm6JHSMaQU0XbbmA-Nh45CN_6w-_PDrGFHTcqs_8D4y_lf0ReNzHIA</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Gushchin, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Family of quasi-monotonic finite-difference schemes of the second-order of approximation</title><author>Gushchin, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2314-a9e9da803d0d02ddc4d380341c5566ed60bf983101454a95d98a02dd735361e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Cauchy problems</topic><topic>Criteria</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gushchin, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gushchin, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Family of quasi-monotonic finite-difference schemes of the second-order of approximation</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>8</volume><issue>5</issue><spage>487</spage><epage>496</epage><pages>487-496</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>Using a simple model of a linear transfer equation, a family of hybrid monotonic finite-difference schemes is constructed. By differential approximation analysis, it is shown that the resulting family yields a second-order approximation in the spatial variable, having minimal scheme viscosity and dispersion and being monotonic. It is demonstrated that the operability domain of the basic schemes, namely, the modified central difference schemes (MCDS) and the modified upwind difference schemes (MUDS), forms a nonempty set. A local criterion for switching between the basic schemes is proposed; this criterion employs the sign of the product of the velocity, as well as the first and second differences of the transferred functions at the considered point. Within the studied schemes, the optimal pair of basic schemes, possessing the above-mentioned properties and being closest to the third-order scheme, is obtained. On the solution of the Cauchy problem, the calculation results obtained using some well-known first-, second-, and third-order schemes are compared graphically.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048216050094</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0482 |
ispartof | Mathematical models and computer simulations, 2016-09, Vol.8 (5), p.487-496 |
issn | 2070-0482 2070-0490 |
language | eng |
recordid | cdi_proquest_journals_1880872106 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Cauchy problems Criteria Finite difference method Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Simulation and Modeling |
title | Family of quasi-monotonic finite-difference schemes of the second-order of approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Family%20of%20quasi-monotonic%20finite-difference%20schemes%20of%20the%20second-order%20of%20approximation&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Gushchin,%20V.%20A.&rft.date=2016-09-01&rft.volume=8&rft.issue=5&rft.spage=487&rft.epage=496&rft.pages=487-496&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048216050094&rft_dat=%3Cproquest_cross%3E1880872106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880872106&rft_id=info:pmid/&rfr_iscdi=true |