Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers

The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 2016-10, Vol.56 (8), p.1339-1350
Hauptverfasser: Lin, T.-W., Rowe, L. P., Kaczkowski, A. J., Horn, G. P., Johnson, H. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1350
container_issue 8
container_start_page 1339
container_title Experimental mechanics
container_volume 56
creator Lin, T.-W.
Rowe, L. P.
Kaczkowski, A. J.
Horn, G. P.
Johnson, H. T.
description The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished solar cell. This paper presents a polarized infrared imaging system that achieves both infrared photoelastic analysis and polarized photoluminescence imaging. A polarization video-processing algorithm is used to resolve the polarization state of the detected photoelastic and photoluminescence signals and simultaneously reduce the noise. Defects in multi-crystalline silicon photovoltaic wafers are investigated using the polarized photoluminescence imaging setup, which can capture both the band-to-band and defect-band photoluminescence emission and spatially resolve the defect structures. The photoluminescence imaging results are qualitatively compared to the infrared photoelastic images to investigate the coupled electrical and mechanical properties of the defect structures. The technology described here creates a pathway to rapid full-field wafer quality inspection in a manufacturing setting and will help to improve wafer material processing.
doi_str_mv 10.1007/s11340-016-0177-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880871701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880871701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9437262b4a228b497e83c597243e3d9e69fc14a8bf491b2be5727d8f356fa463</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC59VMkt1kj1r8UyhYtOAxZLNJm7Ld1GRbqJ_elFXw4mEYeLzfm-EhdA34FjDmdxGAMpxjKNNwnvMTNALOICe8LE7RCGNgORMFnKOLGNc4MZSTETrMfauC-1K9813-ZqJv96bJphu1dN0ysz5kD75fZfOV771pVeydzlTXDEK727jORG06bbLJSgWle_Oblnk7uPa-7VXC3l3rdNI_lDUhXqIzq9porn72GC2eHheTl3z2-jyd3M9yTaHs84qlP0tSM0WIqFnFjaC6qDhh1NCmMmVlNTAlassqqEltCk54IywtSqtYScfoZojdBv-5M7GXa78LXbooQQgsOHAMyQWDSwcfYzBWboPbqHCQgOWxYDkULFPB8liw5IkhAxOTt1ua8Cf5X-gbzY1_qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880871701</pqid></control><display><type>article</type><title>Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers</title><source>Springer Nature - Complete Springer Journals</source><creator>Lin, T.-W. ; Rowe, L. P. ; Kaczkowski, A. J. ; Horn, G. P. ; Johnson, H. T.</creator><creatorcontrib>Lin, T.-W. ; Rowe, L. P. ; Kaczkowski, A. J. ; Horn, G. P. ; Johnson, H. T.</creatorcontrib><description>The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished solar cell. This paper presents a polarized infrared imaging system that achieves both infrared photoelastic analysis and polarized photoluminescence imaging. A polarization video-processing algorithm is used to resolve the polarization state of the detected photoelastic and photoluminescence signals and simultaneously reduce the noise. Defects in multi-crystalline silicon photovoltaic wafers are investigated using the polarized photoluminescence imaging setup, which can capture both the band-to-band and defect-band photoluminescence emission and spatially resolve the defect structures. The photoluminescence imaging results are qualitatively compared to the infrared photoelastic images to investigate the coupled electrical and mechanical properties of the defect structures. The technology described here creates a pathway to rapid full-field wafer quality inspection in a manufacturing setting and will help to improve wafer material processing.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-016-0177-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Crystal defects ; Crystal structure ; Crystallinity ; Dynamical Systems ; Engineering ; Infrared analysis ; Infrared imagery ; Infrared imaging ; Infrared imaging systems ; Inspection ; Lasers ; Mechanical properties ; Noise reduction ; Optical Devices ; Optics ; Photoelastic analysis ; Photoluminescence ; Photonics ; Photovoltaic cells ; Polarization ; Production methods ; Residual stress ; Silicon ; Silicon wafers ; Solar cells ; Solid Mechanics ; Solidification ; Vibration ; Wafers</subject><ispartof>Experimental mechanics, 2016-10, Vol.56 (8), p.1339-1350</ispartof><rights>Society for Experimental Mechanics 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9437262b4a228b497e83c597243e3d9e69fc14a8bf491b2be5727d8f356fa463</citedby><cites>FETCH-LOGICAL-c316t-9437262b4a228b497e83c597243e3d9e69fc14a8bf491b2be5727d8f356fa463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-016-0177-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-016-0177-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Lin, T.-W.</creatorcontrib><creatorcontrib>Rowe, L. P.</creatorcontrib><creatorcontrib>Kaczkowski, A. J.</creatorcontrib><creatorcontrib>Horn, G. P.</creatorcontrib><creatorcontrib>Johnson, H. T.</creatorcontrib><title>Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished solar cell. This paper presents a polarized infrared imaging system that achieves both infrared photoelastic analysis and polarized photoluminescence imaging. A polarization video-processing algorithm is used to resolve the polarization state of the detected photoelastic and photoluminescence signals and simultaneously reduce the noise. Defects in multi-crystalline silicon photovoltaic wafers are investigated using the polarized photoluminescence imaging setup, which can capture both the band-to-band and defect-band photoluminescence emission and spatially resolve the defect structures. The photoluminescence imaging results are qualitatively compared to the infrared photoelastic images to investigate the coupled electrical and mechanical properties of the defect structures. The technology described here creates a pathway to rapid full-field wafer quality inspection in a manufacturing setting and will help to improve wafer material processing.</description><subject>Algorithms</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Infrared analysis</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Infrared imaging systems</subject><subject>Inspection</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Noise reduction</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photoelastic analysis</subject><subject>Photoluminescence</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Polarization</subject><subject>Production methods</subject><subject>Residual stress</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Vibration</subject><subject>Wafers</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC59VMkt1kj1r8UyhYtOAxZLNJm7Ld1GRbqJ_elFXw4mEYeLzfm-EhdA34FjDmdxGAMpxjKNNwnvMTNALOICe8LE7RCGNgORMFnKOLGNc4MZSTETrMfauC-1K9813-ZqJv96bJphu1dN0ysz5kD75fZfOV771pVeydzlTXDEK727jORG06bbLJSgWle_Oblnk7uPa-7VXC3l3rdNI_lDUhXqIzq9porn72GC2eHheTl3z2-jyd3M9yTaHs84qlP0tSM0WIqFnFjaC6qDhh1NCmMmVlNTAlassqqEltCk54IywtSqtYScfoZojdBv-5M7GXa78LXbooQQgsOHAMyQWDSwcfYzBWboPbqHCQgOWxYDkULFPB8liw5IkhAxOTt1ua8Cf5X-gbzY1_qg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Lin, T.-W.</creator><creator>Rowe, L. P.</creator><creator>Kaczkowski, A. J.</creator><creator>Horn, G. P.</creator><creator>Johnson, H. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers</title><author>Lin, T.-W. ; Rowe, L. P. ; Kaczkowski, A. J. ; Horn, G. P. ; Johnson, H. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9437262b4a228b497e83c597243e3d9e69fc14a8bf491b2be5727d8f356fa463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Infrared analysis</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Infrared imaging systems</topic><topic>Inspection</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Noise reduction</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photoelastic analysis</topic><topic>Photoluminescence</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Polarization</topic><topic>Production methods</topic><topic>Residual stress</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Vibration</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, T.-W.</creatorcontrib><creatorcontrib>Rowe, L. P.</creatorcontrib><creatorcontrib>Kaczkowski, A. J.</creatorcontrib><creatorcontrib>Horn, G. P.</creatorcontrib><creatorcontrib>Johnson, H. T.</creatorcontrib><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, T.-W.</au><au>Rowe, L. P.</au><au>Kaczkowski, A. J.</au><au>Horn, G. P.</au><au>Johnson, H. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>56</volume><issue>8</issue><spage>1339</spage><epage>1350</epage><pages>1339-1350</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished solar cell. This paper presents a polarized infrared imaging system that achieves both infrared photoelastic analysis and polarized photoluminescence imaging. A polarization video-processing algorithm is used to resolve the polarization state of the detected photoelastic and photoluminescence signals and simultaneously reduce the noise. Defects in multi-crystalline silicon photovoltaic wafers are investigated using the polarized photoluminescence imaging setup, which can capture both the band-to-band and defect-band photoluminescence emission and spatially resolve the defect structures. The photoluminescence imaging results are qualitatively compared to the infrared photoelastic images to investigate the coupled electrical and mechanical properties of the defect structures. The technology described here creates a pathway to rapid full-field wafer quality inspection in a manufacturing setting and will help to improve wafer material processing.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-016-0177-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-4851
ispartof Experimental mechanics, 2016-10, Vol.56 (8), p.1339-1350
issn 0014-4851
1741-2765
language eng
recordid cdi_proquest_journals_1880871701
source Springer Nature - Complete Springer Journals
subjects Algorithms
Biomedical Engineering and Bioengineering
Characterization and Evaluation of Materials
Control
Crystal defects
Crystal structure
Crystallinity
Dynamical Systems
Engineering
Infrared analysis
Infrared imagery
Infrared imaging
Infrared imaging systems
Inspection
Lasers
Mechanical properties
Noise reduction
Optical Devices
Optics
Photoelastic analysis
Photoluminescence
Photonics
Photovoltaic cells
Polarization
Production methods
Residual stress
Silicon
Silicon wafers
Solar cells
Solid Mechanics
Solidification
Vibration
Wafers
title Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization-Resolved%20Imaging%20for%20Both%20Photoelastic%20and%20Photoluminescence%20Characterization%20of%20Photovoltaic%20Silicon%20Wafers&rft.jtitle=Experimental%20mechanics&rft.au=Lin,%20T.-W.&rft.date=2016-10-01&rft.volume=56&rft.issue=8&rft.spage=1339&rft.epage=1350&rft.pages=1339-1350&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-016-0177-7&rft_dat=%3Cproquest_cross%3E1880871701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880871701&rft_id=info:pmid/&rfr_iscdi=true