Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers
The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished sol...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2016-10, Vol.56 (8), p.1339-1350 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1350 |
---|---|
container_issue | 8 |
container_start_page | 1339 |
container_title | Experimental mechanics |
container_volume | 56 |
creator | Lin, T.-W. Rowe, L. P. Kaczkowski, A. J. Horn, G. P. Johnson, H. T. |
description | The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished solar cell. This paper presents a polarized infrared imaging system that achieves both infrared photoelastic analysis and polarized photoluminescence imaging. A polarization video-processing algorithm is used to resolve the polarization state of the detected photoelastic and photoluminescence signals and simultaneously reduce the noise. Defects in multi-crystalline silicon photovoltaic wafers are investigated using the polarized photoluminescence imaging setup, which can capture both the band-to-band and defect-band photoluminescence emission and spatially resolve the defect structures. The photoluminescence imaging results are qualitatively compared to the infrared photoelastic images to investigate the coupled electrical and mechanical properties of the defect structures. The technology described here creates a pathway to rapid full-field wafer quality inspection in a manufacturing setting and will help to improve wafer material processing. |
doi_str_mv | 10.1007/s11340-016-0177-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880871701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880871701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9437262b4a228b497e83c597243e3d9e69fc14a8bf491b2be5727d8f356fa463</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC59VMkt1kj1r8UyhYtOAxZLNJm7Ld1GRbqJ_elFXw4mEYeLzfm-EhdA34FjDmdxGAMpxjKNNwnvMTNALOICe8LE7RCGNgORMFnKOLGNc4MZSTETrMfauC-1K9813-ZqJv96bJphu1dN0ysz5kD75fZfOV771pVeydzlTXDEK727jORG06bbLJSgWle_Oblnk7uPa-7VXC3l3rdNI_lDUhXqIzq9porn72GC2eHheTl3z2-jyd3M9yTaHs84qlP0tSM0WIqFnFjaC6qDhh1NCmMmVlNTAlassqqEltCk54IywtSqtYScfoZojdBv-5M7GXa78LXbooQQgsOHAMyQWDSwcfYzBWboPbqHCQgOWxYDkULFPB8liw5IkhAxOTt1ua8Cf5X-gbzY1_qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880871701</pqid></control><display><type>article</type><title>Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers</title><source>Springer Nature - Complete Springer Journals</source><creator>Lin, T.-W. ; Rowe, L. P. ; Kaczkowski, A. J. ; Horn, G. P. ; Johnson, H. T.</creator><creatorcontrib>Lin, T.-W. ; Rowe, L. P. ; Kaczkowski, A. J. ; Horn, G. P. ; Johnson, H. T.</creatorcontrib><description>The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished solar cell. This paper presents a polarized infrared imaging system that achieves both infrared photoelastic analysis and polarized photoluminescence imaging. A polarization video-processing algorithm is used to resolve the polarization state of the detected photoelastic and photoluminescence signals and simultaneously reduce the noise. Defects in multi-crystalline silicon photovoltaic wafers are investigated using the polarized photoluminescence imaging setup, which can capture both the band-to-band and defect-band photoluminescence emission and spatially resolve the defect structures. The photoluminescence imaging results are qualitatively compared to the infrared photoelastic images to investigate the coupled electrical and mechanical properties of the defect structures. The technology described here creates a pathway to rapid full-field wafer quality inspection in a manufacturing setting and will help to improve wafer material processing.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-016-0177-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Crystal defects ; Crystal structure ; Crystallinity ; Dynamical Systems ; Engineering ; Infrared analysis ; Infrared imagery ; Infrared imaging ; Infrared imaging systems ; Inspection ; Lasers ; Mechanical properties ; Noise reduction ; Optical Devices ; Optics ; Photoelastic analysis ; Photoluminescence ; Photonics ; Photovoltaic cells ; Polarization ; Production methods ; Residual stress ; Silicon ; Silicon wafers ; Solar cells ; Solid Mechanics ; Solidification ; Vibration ; Wafers</subject><ispartof>Experimental mechanics, 2016-10, Vol.56 (8), p.1339-1350</ispartof><rights>Society for Experimental Mechanics 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9437262b4a228b497e83c597243e3d9e69fc14a8bf491b2be5727d8f356fa463</citedby><cites>FETCH-LOGICAL-c316t-9437262b4a228b497e83c597243e3d9e69fc14a8bf491b2be5727d8f356fa463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-016-0177-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-016-0177-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Lin, T.-W.</creatorcontrib><creatorcontrib>Rowe, L. P.</creatorcontrib><creatorcontrib>Kaczkowski, A. J.</creatorcontrib><creatorcontrib>Horn, G. P.</creatorcontrib><creatorcontrib>Johnson, H. T.</creatorcontrib><title>Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished solar cell. This paper presents a polarized infrared imaging system that achieves both infrared photoelastic analysis and polarized photoluminescence imaging. A polarization video-processing algorithm is used to resolve the polarization state of the detected photoelastic and photoluminescence signals and simultaneously reduce the noise. Defects in multi-crystalline silicon photovoltaic wafers are investigated using the polarized photoluminescence imaging setup, which can capture both the band-to-band and defect-band photoluminescence emission and spatially resolve the defect structures. The photoluminescence imaging results are qualitatively compared to the infrared photoelastic images to investigate the coupled electrical and mechanical properties of the defect structures. The technology described here creates a pathway to rapid full-field wafer quality inspection in a manufacturing setting and will help to improve wafer material processing.</description><subject>Algorithms</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Infrared analysis</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Infrared imaging systems</subject><subject>Inspection</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Noise reduction</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photoelastic analysis</subject><subject>Photoluminescence</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Polarization</subject><subject>Production methods</subject><subject>Residual stress</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Vibration</subject><subject>Wafers</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC59VMkt1kj1r8UyhYtOAxZLNJm7Ld1GRbqJ_elFXw4mEYeLzfm-EhdA34FjDmdxGAMpxjKNNwnvMTNALOICe8LE7RCGNgORMFnKOLGNc4MZSTETrMfauC-1K9813-ZqJv96bJphu1dN0ysz5kD75fZfOV771pVeydzlTXDEK727jORG06bbLJSgWle_Oblnk7uPa-7VXC3l3rdNI_lDUhXqIzq9porn72GC2eHheTl3z2-jyd3M9yTaHs84qlP0tSM0WIqFnFjaC6qDhh1NCmMmVlNTAlassqqEltCk54IywtSqtYScfoZojdBv-5M7GXa78LXbooQQgsOHAMyQWDSwcfYzBWboPbqHCQgOWxYDkULFPB8liw5IkhAxOTt1ua8Cf5X-gbzY1_qg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Lin, T.-W.</creator><creator>Rowe, L. P.</creator><creator>Kaczkowski, A. J.</creator><creator>Horn, G. P.</creator><creator>Johnson, H. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers</title><author>Lin, T.-W. ; Rowe, L. P. ; Kaczkowski, A. J. ; Horn, G. P. ; Johnson, H. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9437262b4a228b497e83c597243e3d9e69fc14a8bf491b2be5727d8f356fa463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Infrared analysis</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Infrared imaging systems</topic><topic>Inspection</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Noise reduction</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photoelastic analysis</topic><topic>Photoluminescence</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Polarization</topic><topic>Production methods</topic><topic>Residual stress</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Vibration</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, T.-W.</creatorcontrib><creatorcontrib>Rowe, L. P.</creatorcontrib><creatorcontrib>Kaczkowski, A. J.</creatorcontrib><creatorcontrib>Horn, G. P.</creatorcontrib><creatorcontrib>Johnson, H. T.</creatorcontrib><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, T.-W.</au><au>Rowe, L. P.</au><au>Kaczkowski, A. J.</au><au>Horn, G. P.</au><au>Johnson, H. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>56</volume><issue>8</issue><spage>1339</spage><epage>1350</epage><pages>1339-1350</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>The solar industry uses low-cost solidification processing methods to produce silicon wafer-based solar cells. The solidification processing can introduce crystalline defects and residual stresses in the wafers, which may impact the electrical performance and mechanical reliability of a finished solar cell. This paper presents a polarized infrared imaging system that achieves both infrared photoelastic analysis and polarized photoluminescence imaging. A polarization video-processing algorithm is used to resolve the polarization state of the detected photoelastic and photoluminescence signals and simultaneously reduce the noise. Defects in multi-crystalline silicon photovoltaic wafers are investigated using the polarized photoluminescence imaging setup, which can capture both the band-to-band and defect-band photoluminescence emission and spatially resolve the defect structures. The photoluminescence imaging results are qualitatively compared to the infrared photoelastic images to investigate the coupled electrical and mechanical properties of the defect structures. The technology described here creates a pathway to rapid full-field wafer quality inspection in a manufacturing setting and will help to improve wafer material processing.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-016-0177-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4851 |
ispartof | Experimental mechanics, 2016-10, Vol.56 (8), p.1339-1350 |
issn | 0014-4851 1741-2765 |
language | eng |
recordid | cdi_proquest_journals_1880871701 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Control Crystal defects Crystal structure Crystallinity Dynamical Systems Engineering Infrared analysis Infrared imagery Infrared imaging Infrared imaging systems Inspection Lasers Mechanical properties Noise reduction Optical Devices Optics Photoelastic analysis Photoluminescence Photonics Photovoltaic cells Polarization Production methods Residual stress Silicon Silicon wafers Solar cells Solid Mechanics Solidification Vibration Wafers |
title | Polarization-Resolved Imaging for Both Photoelastic and Photoluminescence Characterization of Photovoltaic Silicon Wafers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization-Resolved%20Imaging%20for%20Both%20Photoelastic%20and%20Photoluminescence%20Characterization%20of%20Photovoltaic%20Silicon%20Wafers&rft.jtitle=Experimental%20mechanics&rft.au=Lin,%20T.-W.&rft.date=2016-10-01&rft.volume=56&rft.issue=8&rft.spage=1339&rft.epage=1350&rft.pages=1339-1350&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-016-0177-7&rft_dat=%3Cproquest_cross%3E1880871701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880871701&rft_id=info:pmid/&rfr_iscdi=true |