Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux
The systematic features of the formation of the low-resistivity compound Cu 3 Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i -GaAs substrate. Treatment of the Cu/Ge/ i -GaAs system, in which the la...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2016-09, Vol.50 (9), p.1236-1240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1240 |
---|---|
container_issue | 9 |
container_start_page | 1236 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 50 |
creator | Erofeev, E. V. Kazimirov, A. I. Fedin, I. V. Kagadei, V. A. |
description | The systematic features of the formation of the low-resistivity compound Cu
3
Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an
i
-GaAs substrate. Treatment of the Cu/Ge/
i
-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10
15
at cm
2
s
–1
for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu
3
Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/
i
-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu
3
Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu
3
Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/
i
-GaAs sample. |
doi_str_mv | 10.1134/S1063782616090086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880870560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880870560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1d9af12655e6b890a40638f307e3ad7c978340a7e11c8af32ee79f5e554111843</originalsourceid><addsrcrecordid>eNp1UFFLwzAQDqLgnP4A3wI-V3NNm6SPMtwmDHxQn0vWXraOtalJqvbfmzkfBBEO7oP7vu_uPkKugd0C8OzuGZjgUqUCBCsYU-KETCCiRGSyOD1gwZPD_JxceL9jDEDl2YRs5ta1OjS2o9bQsEW6tx-JQ9_40Lw3YaSVbXs7dDWdDXyBdD1-MwK2PTodBoc0ONShxS7QpqM6VrBtU9HtWDu7wY6a_fB5Sc6M3nu8-ulT8jp_eJktk9XT4nF2v0oqDiIkUBfaQCryHMVaFUxn8W5lOJPIdS2rQiqeMS0RoFLa8BRRFibHPM8gfpTxKbk5-vbOvg3oQ7mzg-viyhKUYkqyXLDIgiOrctZ7h6bsXdNqN5bAykOe5Z88oyY9anzkdht0v5z_FX0BG753Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880870560</pqid></control><display><type>article</type><title>Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux</title><source>SpringerNature Journals</source><creator>Erofeev, E. V. ; Kazimirov, A. I. ; Fedin, I. V. ; Kagadei, V. A.</creator><creatorcontrib>Erofeev, E. V. ; Kazimirov, A. I. ; Fedin, I. V. ; Kagadei, V. A.</creatorcontrib><description>The systematic features of the formation of the low-resistivity compound Cu
3
Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an
i
-GaAs substrate. Treatment of the Cu/Ge/
i
-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10
15
at cm
2
s
–1
for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu
3
Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/
i
-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu
3
Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu
3
Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/
i
-GaAs sample.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782616090086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemical reactions ; Diffusion effects ; Electrical resistivity ; Fabrication ; Flux density ; Hydrogen ; Hydrogen atoms ; Interdiffusion ; Low temperature ; Magnetic Materials ; Magnetism ; Phase composition ; Physics ; Physics and Astronomy ; Room temperature ; Substrates ; Testing of Materials and Structures ; Thickness ; Treatment</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2016-09, Vol.50 (9), p.1236-1240</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1d9af12655e6b890a40638f307e3ad7c978340a7e11c8af32ee79f5e554111843</citedby><cites>FETCH-LOGICAL-c316t-1d9af12655e6b890a40638f307e3ad7c978340a7e11c8af32ee79f5e554111843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782616090086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782616090086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Erofeev, E. V.</creatorcontrib><creatorcontrib>Kazimirov, A. I.</creatorcontrib><creatorcontrib>Fedin, I. V.</creatorcontrib><creatorcontrib>Kagadei, V. A.</creatorcontrib><title>Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The systematic features of the formation of the low-resistivity compound Cu
3
Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an
i
-GaAs substrate. Treatment of the Cu/Ge/
i
-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10
15
at cm
2
s
–1
for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu
3
Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/
i
-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu
3
Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu
3
Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/
i
-GaAs sample.</description><subject>Chemical reactions</subject><subject>Diffusion effects</subject><subject>Electrical resistivity</subject><subject>Fabrication</subject><subject>Flux density</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Interdiffusion</subject><subject>Low temperature</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Phase composition</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Room temperature</subject><subject>Substrates</subject><subject>Testing of Materials and Structures</subject><subject>Thickness</subject><subject>Treatment</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UFFLwzAQDqLgnP4A3wI-V3NNm6SPMtwmDHxQn0vWXraOtalJqvbfmzkfBBEO7oP7vu_uPkKugd0C8OzuGZjgUqUCBCsYU-KETCCiRGSyOD1gwZPD_JxceL9jDEDl2YRs5ta1OjS2o9bQsEW6tx-JQ9_40Lw3YaSVbXs7dDWdDXyBdD1-MwK2PTodBoc0ONShxS7QpqM6VrBtU9HtWDu7wY6a_fB5Sc6M3nu8-ulT8jp_eJktk9XT4nF2v0oqDiIkUBfaQCryHMVaFUxn8W5lOJPIdS2rQiqeMS0RoFLa8BRRFibHPM8gfpTxKbk5-vbOvg3oQ7mzg-viyhKUYkqyXLDIgiOrctZ7h6bsXdNqN5bAykOe5Z88oyY9anzkdht0v5z_FX0BG753Vg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Erofeev, E. V.</creator><creator>Kazimirov, A. I.</creator><creator>Fedin, I. V.</creator><creator>Kagadei, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux</title><author>Erofeev, E. V. ; Kazimirov, A. I. ; Fedin, I. V. ; Kagadei, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1d9af12655e6b890a40638f307e3ad7c978340a7e11c8af32ee79f5e554111843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical reactions</topic><topic>Diffusion effects</topic><topic>Electrical resistivity</topic><topic>Fabrication</topic><topic>Flux density</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Interdiffusion</topic><topic>Low temperature</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Phase composition</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Room temperature</topic><topic>Substrates</topic><topic>Testing of Materials and Structures</topic><topic>Thickness</topic><topic>Treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erofeev, E. V.</creatorcontrib><creatorcontrib>Kazimirov, A. I.</creatorcontrib><creatorcontrib>Fedin, I. V.</creatorcontrib><creatorcontrib>Kagadei, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erofeev, E. V.</au><au>Kazimirov, A. I.</au><au>Fedin, I. V.</au><au>Kagadei, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>50</volume><issue>9</issue><spage>1236</spage><epage>1240</epage><pages>1236-1240</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The systematic features of the formation of the low-resistivity compound Cu
3
Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an
i
-GaAs substrate. Treatment of the Cu/Ge/
i
-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10
15
at cm
2
s
–1
for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu
3
Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/
i
-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu
3
Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu
3
Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/
i
-GaAs sample.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782616090086</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2016-09, Vol.50 (9), p.1236-1240 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_proquest_journals_1880870560 |
source | SpringerNature Journals |
subjects | Chemical reactions Diffusion effects Electrical resistivity Fabrication Flux density Hydrogen Hydrogen atoms Interdiffusion Low temperature Magnetic Materials Magnetism Phase composition Physics Physics and Astronomy Room temperature Substrates Testing of Materials and Structures Thickness Treatment |
title | Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20the%20low-resistivity%20compound%20Cu3Ge%20by%20low-temperature%20treatment%20in%20an%20atomic%20hydrogen%20flux&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Erofeev,%20E.%20V.&rft.date=2016-09-01&rft.volume=50&rft.issue=9&rft.spage=1236&rft.epage=1240&rft.pages=1236-1240&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782616090086&rft_dat=%3Cproquest_cross%3E1880870560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880870560&rft_id=info:pmid/&rfr_iscdi=true |