Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux

The systematic features of the formation of the low-resistivity compound Cu 3 Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i -GaAs substrate. Treatment of the Cu/Ge/ i -GaAs system, in which the la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2016-09, Vol.50 (9), p.1236-1240
Hauptverfasser: Erofeev, E. V., Kazimirov, A. I., Fedin, I. V., Kagadei, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1240
container_issue 9
container_start_page 1236
container_title Semiconductors (Woodbury, N.Y.)
container_volume 50
creator Erofeev, E. V.
Kazimirov, A. I.
Fedin, I. V.
Kagadei, V. A.
description The systematic features of the formation of the low-resistivity compound Cu 3 Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i -GaAs substrate. Treatment of the Cu/Ge/ i -GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10 15 at cm 2 s –1 for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu 3 Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/ i -GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu 3 Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu 3 Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/ i -GaAs sample.
doi_str_mv 10.1134/S1063782616090086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880870560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880870560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1d9af12655e6b890a40638f307e3ad7c978340a7e11c8af32ee79f5e554111843</originalsourceid><addsrcrecordid>eNp1UFFLwzAQDqLgnP4A3wI-V3NNm6SPMtwmDHxQn0vWXraOtalJqvbfmzkfBBEO7oP7vu_uPkKugd0C8OzuGZjgUqUCBCsYU-KETCCiRGSyOD1gwZPD_JxceL9jDEDl2YRs5ta1OjS2o9bQsEW6tx-JQ9_40Lw3YaSVbXs7dDWdDXyBdD1-MwK2PTodBoc0ONShxS7QpqM6VrBtU9HtWDu7wY6a_fB5Sc6M3nu8-ulT8jp_eJktk9XT4nF2v0oqDiIkUBfaQCryHMVaFUxn8W5lOJPIdS2rQiqeMS0RoFLa8BRRFibHPM8gfpTxKbk5-vbOvg3oQ7mzg-viyhKUYkqyXLDIgiOrctZ7h6bsXdNqN5bAykOe5Z88oyY9anzkdht0v5z_FX0BG753Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880870560</pqid></control><display><type>article</type><title>Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux</title><source>SpringerNature Journals</source><creator>Erofeev, E. V. ; Kazimirov, A. I. ; Fedin, I. V. ; Kagadei, V. A.</creator><creatorcontrib>Erofeev, E. V. ; Kazimirov, A. I. ; Fedin, I. V. ; Kagadei, V. A.</creatorcontrib><description>The systematic features of the formation of the low-resistivity compound Cu 3 Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i -GaAs substrate. Treatment of the Cu/Ge/ i -GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10 15 at cm 2 s –1 for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu 3 Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/ i -GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu 3 Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu 3 Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/ i -GaAs sample.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782616090086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemical reactions ; Diffusion effects ; Electrical resistivity ; Fabrication ; Flux density ; Hydrogen ; Hydrogen atoms ; Interdiffusion ; Low temperature ; Magnetic Materials ; Magnetism ; Phase composition ; Physics ; Physics and Astronomy ; Room temperature ; Substrates ; Testing of Materials and Structures ; Thickness ; Treatment</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2016-09, Vol.50 (9), p.1236-1240</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1d9af12655e6b890a40638f307e3ad7c978340a7e11c8af32ee79f5e554111843</citedby><cites>FETCH-LOGICAL-c316t-1d9af12655e6b890a40638f307e3ad7c978340a7e11c8af32ee79f5e554111843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782616090086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782616090086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Erofeev, E. V.</creatorcontrib><creatorcontrib>Kazimirov, A. I.</creatorcontrib><creatorcontrib>Fedin, I. V.</creatorcontrib><creatorcontrib>Kagadei, V. A.</creatorcontrib><title>Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The systematic features of the formation of the low-resistivity compound Cu 3 Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i -GaAs substrate. Treatment of the Cu/Ge/ i -GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10 15 at cm 2 s –1 for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu 3 Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/ i -GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu 3 Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu 3 Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/ i -GaAs sample.</description><subject>Chemical reactions</subject><subject>Diffusion effects</subject><subject>Electrical resistivity</subject><subject>Fabrication</subject><subject>Flux density</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Interdiffusion</subject><subject>Low temperature</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Phase composition</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Room temperature</subject><subject>Substrates</subject><subject>Testing of Materials and Structures</subject><subject>Thickness</subject><subject>Treatment</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UFFLwzAQDqLgnP4A3wI-V3NNm6SPMtwmDHxQn0vWXraOtalJqvbfmzkfBBEO7oP7vu_uPkKugd0C8OzuGZjgUqUCBCsYU-KETCCiRGSyOD1gwZPD_JxceL9jDEDl2YRs5ta1OjS2o9bQsEW6tx-JQ9_40Lw3YaSVbXs7dDWdDXyBdD1-MwK2PTodBoc0ONShxS7QpqM6VrBtU9HtWDu7wY6a_fB5Sc6M3nu8-ulT8jp_eJktk9XT4nF2v0oqDiIkUBfaQCryHMVaFUxn8W5lOJPIdS2rQiqeMS0RoFLa8BRRFibHPM8gfpTxKbk5-vbOvg3oQ7mzg-viyhKUYkqyXLDIgiOrctZ7h6bsXdNqN5bAykOe5Z88oyY9anzkdht0v5z_FX0BG753Vg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Erofeev, E. V.</creator><creator>Kazimirov, A. I.</creator><creator>Fedin, I. V.</creator><creator>Kagadei, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux</title><author>Erofeev, E. V. ; Kazimirov, A. I. ; Fedin, I. V. ; Kagadei, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1d9af12655e6b890a40638f307e3ad7c978340a7e11c8af32ee79f5e554111843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical reactions</topic><topic>Diffusion effects</topic><topic>Electrical resistivity</topic><topic>Fabrication</topic><topic>Flux density</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Interdiffusion</topic><topic>Low temperature</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Phase composition</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Room temperature</topic><topic>Substrates</topic><topic>Testing of Materials and Structures</topic><topic>Thickness</topic><topic>Treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erofeev, E. V.</creatorcontrib><creatorcontrib>Kazimirov, A. I.</creatorcontrib><creatorcontrib>Fedin, I. V.</creatorcontrib><creatorcontrib>Kagadei, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erofeev, E. V.</au><au>Kazimirov, A. I.</au><au>Fedin, I. V.</au><au>Kagadei, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>50</volume><issue>9</issue><spage>1236</spage><epage>1240</epage><pages>1236-1240</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The systematic features of the formation of the low-resistivity compound Cu 3 Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i -GaAs substrate. Treatment of the Cu/Ge/ i -GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10 15 at cm 2 s –1 for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu 3 Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/ i -GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu 3 Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu 3 Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/ i -GaAs sample.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782616090086</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2016-09, Vol.50 (9), p.1236-1240
issn 1063-7826
1090-6479
language eng
recordid cdi_proquest_journals_1880870560
source SpringerNature Journals
subjects Chemical reactions
Diffusion effects
Electrical resistivity
Fabrication
Flux density
Hydrogen
Hydrogen atoms
Interdiffusion
Low temperature
Magnetic Materials
Magnetism
Phase composition
Physics
Physics and Astronomy
Room temperature
Substrates
Testing of Materials and Structures
Thickness
Treatment
title Formation of the low-resistivity compound Cu3Ge by low-temperature treatment in an atomic hydrogen flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20the%20low-resistivity%20compound%20Cu3Ge%20by%20low-temperature%20treatment%20in%20an%20atomic%20hydrogen%20flux&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Erofeev,%20E.%20V.&rft.date=2016-09-01&rft.volume=50&rft.issue=9&rft.spage=1236&rft.epage=1240&rft.pages=1236-1240&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782616090086&rft_dat=%3Cproquest_cross%3E1880870560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880870560&rft_id=info:pmid/&rfr_iscdi=true