Resolution of the Wavefront Set Using General Continuous Wavelet Transforms

We consider the problem of characterizing the wavefront set of a tempered distribution u ∈ S ′ ( R d ) in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group H ⊂ GL ( R d ) . In this paper we develop a comprehensive and unified appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2016-10, Vol.22 (5), p.997-1058
Hauptverfasser: Fell, Jonathan, Führ, Hartmut, Voigtlaender, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1058
container_issue 5
container_start_page 997
container_title The Journal of fourier analysis and applications
container_volume 22
creator Fell, Jonathan
Führ, Hartmut
Voigtlaender, Felix
description We consider the problem of characterizing the wavefront set of a tempered distribution u ∈ S ′ ( R d ) in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group H ⊂ GL ( R d ) . In this paper we develop a comprehensive and unified approach that allows to establish characterizations of the wavefront set in terms of rapid coefficient decay, for a large variety of dilation groups. For this purpose, we introduce two technical conditions on the dual action of the group H , called microlocal admissibility and (weak) cone approximation property . Essentially, microlocal admissibility sets up a systematic relationship between the scales in a wavelet dilated by h ∈ H on one side, and the matrix norm of h on the other side. The (weak) cone approximation property describes the ability of the wavelet system to adapt its frequency-side localization to arbitrary frequency cones. Together, microlocal admissibility and the weak cone approximation property allow the characterization of points in the wavefront set using multiple wavelets. Replacing the weak cone approximation by its stronger counterpart gives rise to single wavelet characterizations. We illustrate the scope of our results by discussing—in any dimension d ≥ 2 —the similitude, diagonal and shearlet dilation groups, for which we verify the pertinent conditions. As a result, similitude and diagonal groups can be employed for multiple wavelet characterizations, whereas for the shearlet groups a single wavelet suffices. In particular, the shearlet characterization (previously only established for d = 2 ) holds in arbitrary dimensions.
doi_str_mv 10.1007/s00041-015-9445-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880869702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718428074</galeid><sourcerecordid>A718428074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4fcbc136cf319981be2c22f1dec9765325c0646caf5cce5685006b6e88b6300c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFZ_gLcFz1snm83HHkvRKhYEbfEY0nRSt2yTmuwK_ntT14MXyWGG4XmSzJtl1wQmBEDcRgCoSAGEFXVVsUKcZCPCKCmYZOQ09cDr1PP6PLuIcQdQEiroKHt6wejbvmu8y73Nu3fM3_Qn2uBdl79il69i47b5HB0G3eazNG5c7_v4g7UJWAbtovVhHy-zM6vbiFe_dZyt7u-Ws4di8Tx_nE0XhaGMdUVlzdoQyo2lpK4lWWNpytKSDZpacEZLZoBX3GjLjEHGJQPga45SrjkFMHSc3Qz3HoL_6DF2auf74NKTikgJaUkBZaImA7XVLarGWd8FbdLZ4L4x3qFt0nwqiKxKCaJKAhkEE3yMAa06hGavw5cioI4hqyFklUJWx5CVSE45ODGxbovhz1f-lb4B1V1-eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880869702</pqid></control><display><type>article</type><title>Resolution of the Wavefront Set Using General Continuous Wavelet Transforms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fell, Jonathan ; Führ, Hartmut ; Voigtlaender, Felix</creator><creatorcontrib>Fell, Jonathan ; Führ, Hartmut ; Voigtlaender, Felix</creatorcontrib><description>We consider the problem of characterizing the wavefront set of a tempered distribution u ∈ S ′ ( R d ) in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group H ⊂ GL ( R d ) . In this paper we develop a comprehensive and unified approach that allows to establish characterizations of the wavefront set in terms of rapid coefficient decay, for a large variety of dilation groups. For this purpose, we introduce two technical conditions on the dual action of the group H , called microlocal admissibility and (weak) cone approximation property . Essentially, microlocal admissibility sets up a systematic relationship between the scales in a wavelet dilated by h ∈ H on one side, and the matrix norm of h on the other side. The (weak) cone approximation property describes the ability of the wavelet system to adapt its frequency-side localization to arbitrary frequency cones. Together, microlocal admissibility and the weak cone approximation property allow the characterization of points in the wavefront set using multiple wavelets. Replacing the weak cone approximation by its stronger counterpart gives rise to single wavelet characterizations. We illustrate the scope of our results by discussing—in any dimension d ≥ 2 —the similitude, diagonal and shearlet dilation groups, for which we verify the pertinent conditions. As a result, similitude and diagonal groups can be employed for multiple wavelet characterizations, whereas for the shearlet groups a single wavelet suffices. In particular, the shearlet characterization (previously only established for d = 2 ) holds in arbitrary dimensions.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-015-9445-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximation ; Approximations and Expansions ; Cones ; Continuous wavelet transform ; Dilation ; Fourier Analysis ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing ; Wavelet transforms</subject><ispartof>The Journal of fourier analysis and applications, 2016-10, Vol.22 (5), p.997-1058</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4fcbc136cf319981be2c22f1dec9765325c0646caf5cce5685006b6e88b6300c3</citedby><cites>FETCH-LOGICAL-c355t-4fcbc136cf319981be2c22f1dec9765325c0646caf5cce5685006b6e88b6300c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-015-9445-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-015-9445-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Fell, Jonathan</creatorcontrib><creatorcontrib>Führ, Hartmut</creatorcontrib><creatorcontrib>Voigtlaender, Felix</creatorcontrib><title>Resolution of the Wavefront Set Using General Continuous Wavelet Transforms</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>We consider the problem of characterizing the wavefront set of a tempered distribution u ∈ S ′ ( R d ) in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group H ⊂ GL ( R d ) . In this paper we develop a comprehensive and unified approach that allows to establish characterizations of the wavefront set in terms of rapid coefficient decay, for a large variety of dilation groups. For this purpose, we introduce two technical conditions on the dual action of the group H , called microlocal admissibility and (weak) cone approximation property . Essentially, microlocal admissibility sets up a systematic relationship between the scales in a wavelet dilated by h ∈ H on one side, and the matrix norm of h on the other side. The (weak) cone approximation property describes the ability of the wavelet system to adapt its frequency-side localization to arbitrary frequency cones. Together, microlocal admissibility and the weak cone approximation property allow the characterization of points in the wavefront set using multiple wavelets. Replacing the weak cone approximation by its stronger counterpart gives rise to single wavelet characterizations. We illustrate the scope of our results by discussing—in any dimension d ≥ 2 —the similitude, diagonal and shearlet dilation groups, for which we verify the pertinent conditions. As a result, similitude and diagonal groups can be employed for multiple wavelet characterizations, whereas for the shearlet groups a single wavelet suffices. In particular, the shearlet characterization (previously only established for d = 2 ) holds in arbitrary dimensions.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximation</subject><subject>Approximations and Expansions</subject><subject>Cones</subject><subject>Continuous wavelet transform</subject><subject>Dilation</subject><subject>Fourier Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><subject>Wavelet transforms</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdRsFZ_gLcFz1snm83HHkvRKhYEbfEY0nRSt2yTmuwK_ntT14MXyWGG4XmSzJtl1wQmBEDcRgCoSAGEFXVVsUKcZCPCKCmYZOQ09cDr1PP6PLuIcQdQEiroKHt6wejbvmu8y73Nu3fM3_Qn2uBdl79il69i47b5HB0G3eazNG5c7_v4g7UJWAbtovVhHy-zM6vbiFe_dZyt7u-Ws4di8Tx_nE0XhaGMdUVlzdoQyo2lpK4lWWNpytKSDZpacEZLZoBX3GjLjEHGJQPga45SrjkFMHSc3Qz3HoL_6DF2auf74NKTikgJaUkBZaImA7XVLarGWd8FbdLZ4L4x3qFt0nwqiKxKCaJKAhkEE3yMAa06hGavw5cioI4hqyFklUJWx5CVSE45ODGxbovhz1f-lb4B1V1-eg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Fell, Jonathan</creator><creator>Führ, Hartmut</creator><creator>Voigtlaender, Felix</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Resolution of the Wavefront Set Using General Continuous Wavelet Transforms</title><author>Fell, Jonathan ; Führ, Hartmut ; Voigtlaender, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4fcbc136cf319981be2c22f1dec9765325c0646caf5cce5685006b6e88b6300c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximation</topic><topic>Approximations and Expansions</topic><topic>Cones</topic><topic>Continuous wavelet transform</topic><topic>Dilation</topic><topic>Fourier Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fell, Jonathan</creatorcontrib><creatorcontrib>Führ, Hartmut</creatorcontrib><creatorcontrib>Voigtlaender, Felix</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fell, Jonathan</au><au>Führ, Hartmut</au><au>Voigtlaender, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolution of the Wavefront Set Using General Continuous Wavelet Transforms</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>22</volume><issue>5</issue><spage>997</spage><epage>1058</epage><pages>997-1058</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We consider the problem of characterizing the wavefront set of a tempered distribution u ∈ S ′ ( R d ) in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group H ⊂ GL ( R d ) . In this paper we develop a comprehensive and unified approach that allows to establish characterizations of the wavefront set in terms of rapid coefficient decay, for a large variety of dilation groups. For this purpose, we introduce two technical conditions on the dual action of the group H , called microlocal admissibility and (weak) cone approximation property . Essentially, microlocal admissibility sets up a systematic relationship between the scales in a wavelet dilated by h ∈ H on one side, and the matrix norm of h on the other side. The (weak) cone approximation property describes the ability of the wavelet system to adapt its frequency-side localization to arbitrary frequency cones. Together, microlocal admissibility and the weak cone approximation property allow the characterization of points in the wavefront set using multiple wavelets. Replacing the weak cone approximation by its stronger counterpart gives rise to single wavelet characterizations. We illustrate the scope of our results by discussing—in any dimension d ≥ 2 —the similitude, diagonal and shearlet dilation groups, for which we verify the pertinent conditions. As a result, similitude and diagonal groups can be employed for multiple wavelet characterizations, whereas for the shearlet groups a single wavelet suffices. In particular, the shearlet characterization (previously only established for d = 2 ) holds in arbitrary dimensions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-015-9445-7</doi><tpages>62</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2016-10, Vol.22 (5), p.997-1058
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_1880869702
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Approximation
Approximations and Expansions
Cones
Continuous wavelet transform
Dilation
Fourier Analysis
Mathematical analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
Wavelet transforms
title Resolution of the Wavefront Set Using General Continuous Wavelet Transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolution%20of%20the%20Wavefront%20Set%20Using%20General%20Continuous%20Wavelet%20Transforms&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Fell,%20Jonathan&rft.date=2016-10-01&rft.volume=22&rft.issue=5&rft.spage=997&rft.epage=1058&rft.pages=997-1058&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-015-9445-7&rft_dat=%3Cgale_proqu%3EA718428074%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880869702&rft_id=info:pmid/&rft_galeid=A718428074&rfr_iscdi=true