Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails

We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2016-10, Vol.165 (1), p.126-152
1. Verfasser: Kawai, Reiichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 126
container_title Journal of statistical physics
container_volume 165
creator Kawai, Reiichiro
description We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional stable motions are self-similar with Hurst index larger than one and non-Gaussian stable marginals with infinite variance and have stationary higher order increments. We investigate their sample path properties and asymptotic dependence structure on the basis of codifference. In particular, by incrementing or decrementing sample paths once under suitable conditions, the diffusion rate can be accelerated or decelerated by one order. With a view towards simulation study, we provide a ready-for-use sample path simulation recipe at discrete times along with error analysis. The proposed simulation scheme requires only elementary numerical operations and is robust to high frequency sampling, irregular spacing and super-sampling.
doi_str_mv 10.1007/s10955-016-1602-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880869697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470743414</galeid><sourcerecordid>A470743414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-65d96a1cd7aaf6b53b290aba993168f06fbcf2c193ec2fb51332477db139a25b3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmPwANwqce6wkyZpuCHEKNLQDsA5SttkZOrWkXSgvT2ZyoELsmTL1v9Z9k_INcIMAeRtRFCc54AiRwE0hxMyQS5prgSyUzIBoDQvJPJzchHjGgBUqfiEzCu_-rAhW4Y25XkwzeD7remy18HUnc1e-mN_l1WHnQ2td24fU599--Ejq6z5OmRvxnfxkpw500V79Vun5H3--PZQ5Yvl0_PD_SJvGOdDLnirhMGmlcY4UXNWUwWmNkoxFKUD4erG0QYVsw11NUfGaCFlWyNThvKaTcnNuHcX-s-9jYNe9_uQ7o0ayxJKoYSSSTUbVSvTWe23rh_SYylau_FNv7XOp_l9IUEWrMAiATgCTehjDNbpXfAbEw4aQR_91aO_Ovmrj_5qSAwdmZi025UNf075F_oBb2R8VQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880869697</pqid></control><display><type>article</type><title>Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails</title><source>Springer Nature - Complete Springer Journals</source><creator>Kawai, Reiichiro</creator><creatorcontrib>Kawai, Reiichiro</creatorcontrib><description>We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional stable motions are self-similar with Hurst index larger than one and non-Gaussian stable marginals with infinite variance and have stationary higher order increments. We investigate their sample path properties and asymptotic dependence structure on the basis of codifference. In particular, by incrementing or decrementing sample paths once under suitable conditions, the diffusion rate can be accelerated or decelerated by one order. With a view towards simulation study, we provide a ready-for-use sample path simulation recipe at discrete times along with error analysis. The proposed simulation scheme requires only elementary numerical operations and is robust to high frequency sampling, irregular spacing and super-sampling.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-016-1602-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Codification ; Diffusion rate ; Error analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Sampling ; Self-similarity ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2016-10, Vol.165 (1), p.126-152</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-65d96a1cd7aaf6b53b290aba993168f06fbcf2c193ec2fb51332477db139a25b3</citedby><cites>FETCH-LOGICAL-c355t-65d96a1cd7aaf6b53b290aba993168f06fbcf2c193ec2fb51332477db139a25b3</cites><orcidid>0000-0002-3845-015X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-016-1602-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-016-1602-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kawai, Reiichiro</creatorcontrib><title>Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional stable motions are self-similar with Hurst index larger than one and non-Gaussian stable marginals with infinite variance and have stationary higher order increments. We investigate their sample path properties and asymptotic dependence structure on the basis of codifference. In particular, by incrementing or decrementing sample paths once under suitable conditions, the diffusion rate can be accelerated or decelerated by one order. With a view towards simulation study, we provide a ready-for-use sample path simulation recipe at discrete times along with error analysis. The proposed simulation scheme requires only elementary numerical operations and is robust to high frequency sampling, irregular spacing and super-sampling.</description><subject>Codification</subject><subject>Diffusion rate</subject><subject>Error analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Sampling</subject><subject>Self-similarity</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmPwANwqce6wkyZpuCHEKNLQDsA5SttkZOrWkXSgvT2ZyoELsmTL1v9Z9k_INcIMAeRtRFCc54AiRwE0hxMyQS5prgSyUzIBoDQvJPJzchHjGgBUqfiEzCu_-rAhW4Y25XkwzeD7remy18HUnc1e-mN_l1WHnQ2td24fU599--Ejq6z5OmRvxnfxkpw500V79Vun5H3--PZQ5Yvl0_PD_SJvGOdDLnirhMGmlcY4UXNWUwWmNkoxFKUD4erG0QYVsw11NUfGaCFlWyNThvKaTcnNuHcX-s-9jYNe9_uQ7o0ayxJKoYSSSTUbVSvTWe23rh_SYylau_FNv7XOp_l9IUEWrMAiATgCTehjDNbpXfAbEw4aQR_91aO_Ovmrj_5qSAwdmZi025UNf075F_oBb2R8VQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kawai, Reiichiro</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3845-015X</orcidid></search><sort><creationdate>20161001</creationdate><title>Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails</title><author>Kawai, Reiichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-65d96a1cd7aaf6b53b290aba993168f06fbcf2c193ec2fb51332477db139a25b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Codification</topic><topic>Diffusion rate</topic><topic>Error analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Sampling</topic><topic>Self-similarity</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawai, Reiichiro</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawai, Reiichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>165</volume><issue>1</issue><spage>126</spage><epage>152</epage><pages>126-152</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional stable motions are self-similar with Hurst index larger than one and non-Gaussian stable marginals with infinite variance and have stationary higher order increments. We investigate their sample path properties and asymptotic dependence structure on the basis of codifference. In particular, by incrementing or decrementing sample paths once under suitable conditions, the diffusion rate can be accelerated or decelerated by one order. With a view towards simulation study, we provide a ready-for-use sample path simulation recipe at discrete times along with error analysis. The proposed simulation scheme requires only elementary numerical operations and is robust to high frequency sampling, irregular spacing and super-sampling.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-016-1602-0</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-3845-015X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2016-10, Vol.165 (1), p.126-152
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_1880869697
source Springer Nature - Complete Springer Journals
subjects Codification
Diffusion rate
Error analysis
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Sampling
Self-similarity
Statistical Physics and Dynamical Systems
Theoretical
title Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Order%20Fractional%20Stable%20Motion:%20Hyperdiffusion%20with%20Heavy%20Tails&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Kawai,%20Reiichiro&rft.date=2016-10-01&rft.volume=165&rft.issue=1&rft.spage=126&rft.epage=152&rft.pages=126-152&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-016-1602-0&rft_dat=%3Cgale_proqu%3EA470743414%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880869697&rft_id=info:pmid/&rft_galeid=A470743414&rfr_iscdi=true